1,195 research outputs found

    Rapid evolution of promoters from germline-specifically expressed genes including transposon silencing factors

    Get PDF
    Background: The piRNA pathway in animal gonads functions as an ‘RNA-based immune system’, serving to silence transposable elements and prevent inheritance of novel invaders. In Drosophila, this pathway relies on three gonad-specific Argonaute proteins (Argonaute-3, Aubergine and Piwi) that associate with 23–28 nucleotide piRNAs, directing the silencing of transposon-derived transcripts. Transposons constitute a primary driver of genome evolution, yet the evolution of piRNA pathway factors has not received in-depth exploration. Specifically, channel nuclear pore proteins, which impact piRNA processing, exhibit regions of rapid evolution in their promoters. Consequently, the question arises whether such a mode of evolution is a general feature of transposon silencing pathways. Results: By employing genomic analysis of coding and promoter regions within genes that function in transposon silencing in Drosophila, we demonstrate that the promoters of germ cell-specific piRNA factors are undergoing rapid evolution. Our findings indicate that rapid promoter evolution is a common trait among piRNA factors engaged in germline silencing across insect species, potentially contributing to gene expression divergence in closely related taxa. Furthermore, we observe that the promoters of genes exclusively expressed in germ cells generally exhibit rapid evolution, with some divergence in gene expression. Conclusion: Our results suggest that increased germline promoter evolution, in partnership with other factors, could contribute to transposon silencing and evolution of species through differential expression of genes driven by invading transposons

    Dipolar ordering in Fe8?

    Full text link
    We show that the low-temperature physics of molecular nanomagnets, contrary to the prevailing one-molecule picture, must be determined by the long-range magnetic ordering due to many-body dipolar interactions. The calculations here performed, using Ewald's summation, suggest a ferromagnetic ground state with a Curie temperature of about 130 mK. The energy of this state is quite close to those of an antiferromagnetic state and to a glass of frozen spin chains. The latter may be realized at finite temperature due to its high entropy.Comment: 7 pages, no figures, submitted to EP

    Spatio-Temporal Variability of Atmospheric CO2 as Observed from In-Situ Measurements over North America during NASA Field Campaigns (2004-2008)

    Get PDF
    Regional-scale measurements were made over the eastern United States (Intercontinental Chemical Transport Experiment - North America (INTEX-NA), summer 2004); Mexico (Megacity Initiative: Local and Global Research Observations (MILAGRO), March 2006); the eastern North Pacific and Alaska (INTEX-B May 2006); and the Canadian Arctic (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), spring and summer 2008). For these field campaigns, instrumentation for the in situ measurement of CO2 was integrated on the NASA DC-8 research aircraft providing high-resolution (1 second) data traceable to the WMO CO2 mole fraction scale. These observations provide unique and definitive data sets via their intermediate-scale coverage and frequent vertical profiles (0.1 - 12 km) for examining the variability CO2 exhibits above the Earth s surface. A bottom-up anthropogenic CO2 emissions inventory (1deg 1deg) and processing methodology has also been developed for North America in support of these airborne science missions. In this presentation, the spatio-temporal distributions of CO2 and CO column values derived from the campaign measurements will be examined in conjunction with the emissions inventory and transport histories to aid in the interpretation of the CO2 observations

    Polarizing Bubble Collisions

    Full text link
    We predict the polarization of cosmic microwave background (CMB) photons that results from a cosmic bubble collision. The polarization is purely E-mode, symmetric around the axis pointing towards the collision bubble, and has several salient features in its radial dependence that can help distinguish it from a more conventional explanation for unusually cold or hot features in the CMB sky. The anomalous "cold spot" detected by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite is a candidate for a feature produced by such a collision, and the Planck satellite and other proposed surveys will measure the polarization on it in the near future. The detection of such a collision would provide compelling evidence for the string theory landscape.Comment: Published version. 15 pages, 8 figure

    Nuclear multifragmentation and fission: similarity and differences

    Full text link
    Thermal multifragmentation of hot nuclei is interpreted as the nuclear liquid--fog phase transition deep inside the spinodal region. The experimental data for p(8.1GeV) + Au collisions are analyzed. It is concluded that the decay process of hot nuclei is characterized by two size parameters: transition state and freeze-out volumes. The similarity between dynamics of fragmentation and ordinary fission is discussed. The IMF emission time is related to the mean rupture time at the multi-scission point, which corresponds to the kinetic freeze-out configuration.Comment: 7 pages, 3 Postscript figures, Proceedings of IWM 2005, Catani

    KRATTA, a triple telescope array for charged reaction products

    Get PDF
    KRATTA, a new, low threshold, broad energy range triple telescope array has been built to measure the energy, emission angles and isotopic composition of light charged reaction products. It has been equipped with fully digital chains of electronics. The array performed very well during the ASY-EOS experiment, conducted in May 2011 at GSI. The structure and performance of the array are presented using the first experimental results
    corecore