719 research outputs found

    Arsenic Biotransformation as a Cancer Promoting Factor by Inducing DNA Damage and Disruption of Repair Mechanisms

    Get PDF
    Chronic exposure to arsenic in drinking water poses a major global health concern. Populations exposed to high concentrations of arsenic-contaminated drinking water suffer serious health consequences, including alarming cancer incidence and death rates. Arsenic is biotransformed through sequential addition of methyl groups, acquired from s-adenosylmethionine (SAM). Metabolism of arsenic generates a variety of genotoxic and cytotoxic species, damaging DNA directly and indirectly, through the generation of reactive oxidative species and induction of DNA adducts, strand breaks and cross links, and inhibition of the DNA repair process itself. Since SAM is the methyl group donor used by DNA methyltransferases to maintain normal epigenetic patterns in all human cells, arsenic is also postulated to affect maintenance of normal DNA methylation patterns, chromatin structure, and genomic stability. The biological processes underlying the cancer promoting factors of arsenic metabolism, related to DNA damage and repair, will be discussed here

    Apraxia and motor dysfunction in corticobasal syndrome

    Get PDF
    Background: Corticobasal syndrome (CBS) is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS) has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM), is associated with motor system dysfunction and limb apraxia in CBS.   Methods: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R), with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM.   Results: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/2 6.6 years) were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices.   Conclusions: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and pre-motor cortices, as well as the thalamus, while apraxia correlates with pre-motor and parietal atrophy

    Arsenic Exposure and the Induction of Human Cancers

    Get PDF
    Arsenic is a metalloid, that is, considered to be a human carcinogen. Millions of individuals worldwide are chronically exposed through drinking water, with consequences ranging from acute toxicities to development of malignancies, such as skin and lung cancer. Despite well-known arsenic-related health effects, the molecular mechanisms involved are not fully understood; however, the arsenic biotransformation process, which includes methylation changes, is thought to play a key role. This paper explores the relationship of arsenic exposure with cancer development and summarizes current knowledge of the potential mechanisms that may contribute to the neoplastic processes observed in arsenic exposed human populations

    Multiple Components of the VHL Tumor Suppressor Complex Are Frequently Affected by DNA Copy Number Loss in Pheochromocytoma

    Get PDF
    Pheochromocytomas (PCC) are rare tumors that arise in chromaffin tissue of the adrenal gland. PCC are frequently inherited through predisposing mutations in genes such as the von Hippel-Lindau (VHL) tumor suppressor. VHL is part of the VHL elongin BC protein complex that also includes CUL2/5, TCEB1, TCEB2, and RBX1; in normoxic conditions this complex targets hypoxia-inducible factor 1 alpha (HIF1A) for degradation, thus preventing a hypoxic response. VHL inactivation by genetic mechanisms, such as mutation and loss of heterozygosity, inhibits HIF1A degradation, even in the presence of oxygen, and induces a pseudohypoxic response. However, the described <10% VHL mutation rate cannot account for the high frequency of hypoxic response observed. Indeed, little is known about genetic mechanisms disrupting other complex component genes. Here, we show that, in a panel of 171 PCC tumors, 59.6% harbored gene copy number loss (CNL) of at least one complex component. CNL significantly reduced gene expression and was associated with enrichment of gene targets controlled by HIF1. Interestingly, we show that VHL-related renal clear cell carcinoma harbored disruption of VHL alone. Our results indicate that VHL elongin BC protein complex components other than VHL could be important for PCC tumorigenesis and merit further investigation

    Methylated DNA Immunoprecipitation

    Get PDF
    The identification of DNA methylation patterns is a common procedure in the study of epigenetics, as methylation is known to have significant effects on gene expression, and is involved with normal development as well as disease 1-4. Thus, the ability to discriminate between methylated DNA and non-methylated DNA is essential for generating methylation profiles for such studies. Methylated DNA immunoprecipitation (MeDIP) is an efficient technique for the extraction of methylated DNA from a sample of interest 5-7. A sample of as little as 200 ng of DNA is sufficient for the antibody, or immunoprecipitation (IP), reaction. DNA is sonicated into fragments ranging in size from 300-1000 bp, and is divided into immunoprecipitated (IP) and input (IN) portions. IP DNA is subsequently heat denatured and then incubated with anti-5'mC, allowing the monoclonal antibody to bind methylated DNA. After this, magnetic beads containing a secondary antibody with affinity for the primary antibody are added, and incubated. These bead-linked antibodies will bind the monoclonal antibody used in the first step. DNA bound to the antibody complex (methylated DNA) is separated from the rest of the DNA by using a magnet to pull the complexes out of solution. Several washes using IP buffer are then performed to remove the unbound, non-methylated DNA. The methylated DNA/antibody complexes are then digested with Proteinase K to digest the antibodies leaving only the methylated DNA intact. The enriched DNA is purified by phenol:chloroform extraction to remove the protein matter and then precipitated and resuspended in water for later use. PCR techniques can be used to validate the efficiency of the MeDIP procedure by analyzing the amplification products of IP and IN DNA for regions known to lack and known to contain methylated sequences. The purified methylated DNA can then be used for locus-specific (PCR) or genome-wide (microarray and sequencing) methylation studies, and is particularly useful when applied in conjunction with other research tools such as gene expression profiling and array comparative genome hybridization (CGH) 8. Further investigation into DNA methylation will lead to the discovery of new epigenetic targets, which in turn, may be useful in developing new therapeutic or prognostic research tools for diseases such as cancer that are characterized by aberrantly methylated DNA 2, 4, 9-11

    Dysfunction of axonal membrane conductances in adolescents and young adults with spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy is distinct among neurodegenerative conditions of the motor neuron, with onset in developing and maturing patients. Furthermore, the rate of degeneration appears to slow over time, at least in the milder forms. To investigate disease pathophysiology and potential adaptations, the present study utilized axonal excitability studies to provide insights into axonal biophysical properties and explored correlation with clinical severity. Multiple excitability indices (stimulus–response curve, strength–duration time constant, threshold electrotonus, current–threshold relationship and recovery cycle) were investigated in 25 genetically characterized adolescent and adult patients with spinal muscular atrophy, stimulating the median motor nerve at the wrist. Results were compared with 50 age-matched controls. The Medical Research Council sum score and Spinal Muscular Atrophy Functional Rating Scale were used to define the strength and motor functional status of patients with spinal muscular atrophy. In patients with spinal muscular atrophy, there were reductions in compound muscle action potential amplitude (P < 0.0005) associated with reduction in stimulus response slope (P < 0.0005), confirming significant axonal loss. In the patients with mild or ambulatory spinal muscular atrophy, there was reduction of peak amplitude without alteration in axonal excitability; in contrast, in the non-ambulatory or severe spinal muscular atrophy cohort prominent changes in axonal function were apparent. Specifically, there were steep changes in the early phase of hyperpolarization in threshold electrotonus (P < 0.0005) that correlated with clinical severity. Additionally, there were greater changes in depolarizing threshold electrotonus (P < 0.0005) and prolongation of the strength-duration time constant (P = 0.001). Mathematical modelling of the excitability changes obtained in patients with severe spinal muscular atrophy supported a mixed pathology comprising features of axonal degeneration and regeneration. The present study has provided novel insight into the pathophysiology of spinal muscular atrophy, with identification of functional abnormalities involving axonal K+ and Na+ conductances and alterations in passive membrane properties, the latter linked to the process of neurodegeneration

    Human Cancer Long Non-Coding RNA Transcriptomes

    Get PDF
    Once thought to be a part of the ‘dark matter’ of the genome, long non-coding RNAs (lncRNAs) are emerging as an integral functional component of the mammalian transcriptome. LncRNAs are a novel class of mRNA-like transcripts which, despite no known protein-coding potential, demonstrate a wide range of structural and functional roles in cellular biology. However, the magnitude of the contribution of lncRNA expression to normal human tissues and cancers has not been investigated in a comprehensive manner. In this study, we compiled 272 human serial analysis of gene expression (SAGE) libraries to delineate lncRNA transcription patterns across a broad spectrum of normal human tissues and cancers. Using a novel lncRNA discovery pipeline we parsed over 24 million SAGE tags and report lncRNA expression profiles across a panel of 26 different normal human tissues and 19 human cancers. Our findings show extensive, tissue-specific lncRNA expression in normal tissues and highly aberrant lncRNA expression in human cancers. Here, we present a first generation atlas for lncRNA profiling in cancer

    Planting density impact on weed infestation and the yield of Miscanthus grown on two soil types

    Get PDF
    The assessment of the weed infestation effect on biomass yield of Miscanthus x giganteus in the first year of its commercial yield was conducted on two types of soil with different productive ability Luvic Chernozem and Calcic Gleysol. The formed mass of weeds was higher on Luvic Chernozem and the infestation had grown according to the stages of Miscanthus growth. The biomass of weeds depended on the planting density of Miscanthus as well as on the weather conditions during the studied years. Weed infestation of crops very significantly influenced the formation of aboveground biomass of Miscanthus, so that the yields in the first year of commercial harvesting in the control where the weeds were removed manually were significantly higher compared to the crops in which weeds were not removed. The obtained results showed that weeds significantly affect the initial growth and development of Miscanthus plants that are, in general, slow, especially in the year of the crop establishment. The study evaluates the impact of a manual method of suppression and weed infestation of crops on the commercial yield of Miscanthus

    Designing an automated clinical decision support system to match clinical practice guidelines for opioid therapy for chronic pain

    Get PDF
    Abstract Background Opioid prescribing for chronic pain is common and controversial, but recommended clinical practices are followed inconsistently in many clinical settings. Strategies for increasing adherence to clinical practice guideline recommendations are needed to increase effectiveness and reduce negative consequences of opioid prescribing in chronic pain patients. Methods Here we describe the process and outcomes of a project to operationalize the 2003 VA/DOD Clinical Practice Guideline for Opioid Therapy for Chronic Non-Cancer Pain into a computerized decision support system (DSS) to encourage good opioid prescribing practices during primary care visits. We based the DSS on the existing ATHENA-DSS. We used an iterative process of design, testing, and revision of the DSS by a diverse team including guideline authors, medical informatics experts, clinical content experts, and end-users to convert the written clinical practice guideline into a computable algorithm to generate patient-specific recommendations for care based upon existing information in the electronic medical record (EMR), and a set of clinical tools. Results The iterative revision process identified numerous and varied problems with the initially designed system despite diverse expert participation in the design process. The process of operationalizing the guideline identified areas in which the guideline was vague, left decisions to clinical judgment, or required clarification of detail to insure safe clinical implementation. The revisions led to workable solutions to problems, defined the limits of the DSS and its utility in clinical practice, improved integration into clinical workflow, and improved the clarity and accuracy of system recommendations and tools. Conclusions Use of this iterative process led to development of a multifunctional DSS that met the approval of the clinical practice guideline authors, content experts, and clinicians involved in testing. The process and experiences described provide a model for development of other DSSs that translate written guidelines into actionable, real-time clinical recommendations.http://deepblue.lib.umich.edu/bitstream/2027.42/78267/1/1748-5908-5-26.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/2/1748-5908-5-26.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/3/1748-5908-5-26-S3.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/4/1748-5908-5-26-S2.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/5/1748-5908-5-26-S1.TIFFPeer Reviewe

    Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination.

    Get PDF
    Abstract OBJECTIVE: We characterised the clinical course, treatment and outcomes in 59 patients with relapsing myelin oligodendrocyte glycoprotein (MOG) antibody-associated demyelination. METHODS: We evaluated clinical phenotypes, annualised relapse rates (ARR) prior and on immunotherapy and Expanded Disability Status Scale (EDSS), in 218 demyelinating episodes from 33 paediatric and 26 adult patients. RESULTS: The most common initial presentation in the cohort was optic neuritis (ON) in 54% (bilateral (BON) 32%, unilateral (UON) 22%), followed by acute disseminated encephalomyelitis (ADEM) (20%), which occurred exclusively in children. ON was the dominant phenotype (UON 35%, BON 19%) of all clinical episodes. 109/226 (48%) MRIs had no brain lesions. Patients were steroid responsive, but 70% of episodes treated with oral prednisone relapsed, particularly at doses <10\u2009mg daily or within 2 months of cessation. Immunotherapy, including maintenance prednisone (P=0.0004), intravenous immunoglobulin, rituximab and mycophenolate, all reduced median ARRs on-treatment. Treatment failure rates were lower in patients on maintenance steroids (5%) compared with non-steroidal maintenance immunotherapy (38%) (P=0.016). 58% of patients experienced residual disability (average follow-up 61 months, visual loss in 24%). Patients with ON were less likely to have sustained disability defined by a final EDSS of 652 (OR 0.15, P=0.032), while those who had any myelitis were more likely to have sustained residual deficits (OR 3.56, P=0.077). CONCLUSION: Relapsing MOG antibody-associated demyelination is strongly associated with ON across all age groups and ADEM in children. Patients are highly responsive to steroids, but vulnerable to relapse on steroid reduction and cessation
    corecore