423 research outputs found

    The relevance of the contemporary landscape-ecological and biogeochemical studies of the Ob floodplain

    Get PDF
    We have systematized and summarized the results of the Ob River floodplain studies and have shown that the flood and the floodplain influence all the territory of Western Siberia due to the processes happening there. The floodplain at different times was the object of interest of many scientists, but the total level of study of the Ob and the associated ground and the lake network water resources and quality can be generally assessed as low. The waters of the Ob middle course are quite polluted according to bacteria content. It is possible that a significant part oforganic and biogenic substances, microorganisms and some microelements come into the Ob floodplain waters from anthropogenic and natural sources distributed in the watersheds area. The soils of the Ob Riverfloodplain can be considered to be clean andfree ofany chemical pollution. In these soils, the amount of trace elements is small. To study the floodplain changes after a flood the methods of landscape ecology are used, such as the collection and analysis of stock and descriptive materials, literature and maps; the preparation of a series of component and general landscape maps. Nowadays a complex research of the Ob River and the adjacent surface waters is relevant

    Danger due to the translocation of nanoparticles in soil: mathematical modeling

    Get PDF
    A necessary step was taken towards the formation of a migration model of nanoparticles (NPs) from the surface deep into the soil, taking into account the frequency of precipitation and the processes of adsorption and desorption which occur in the soils. An equation for migration of nanoparticles in soil is proposed. A method of obtaining the averaged equations for long-term migration of NPs in the soil profile has been developed. Similarly, partial differential equations may be obtained which describe more complex models, for example, including capillary phenomena, etc. The obtained equations allow the use of integral transformations in order to find solutions. The model can be used to plan natural experiments in different types of soils

    Testing landscape, climate and lithology impact on carbon, major and trace elements of the Lena river and its tributaries during a spring flood period

    Get PDF
    Transport of carbon, major and trace elements by rivers in permafrost-affected regions is one of the key factors in circumpolar aquatic ecosystem response to climate warming and permafrost thaw. A snap-shot study of major and trace element concentration in the Lena River basin during the peak of spring flood revealed a specific group of solutes according to their spatial pattern across the river main stem and tributaries and allowed the establishment of a link to certain landscape parameters. We demonstrate a systematic decrease of labile major and trace anion, alkali and alkaline-earth metal concentration downstream of the main stem of the Lena River, linked to change in dominant rocks from carbonate to silicate, and a northward decreasing influence of the groundwater. In contrast, dissolved organic carbon (DOC) and a number of low-soluble elements exhibited an increase in concentration from the SW to the NE part of the river. We tentatively link this to an increase in soil organic carbon stock and silicate rocks in the Lena River watershed in this direction. Among all the landscape parameters, the proportion of sporadic permafrost on the watershed strongly influenced concentrations of soluble highly mobile elements (Cl, B, DIC, Li, Na, K, Mg, Ca, Sr, Mo, As and U). Another important factor of element concentration control in the Lena River tributaries was the coverage of the watershed by light (for B, Cl, Na, K, U) and deciduous (for Fe, Ni, Zn, Ge, Rb, Zr, La, Th) needle-leaf forest (pine and larch). Our results also suggest a DOC-enhanced transport of low-soluble trace elements in the NW part of the basin. This part of the basin is dominated by silicate rocks and continuous permafrost, as compared to the carbonate rock-dominated and groundwater-affected SW part of the Lena River basin. Overall, the impact of rock lithology and permafrost on major and trace solutes of the Lena River basin during the peak of spring flood was mostly detected at the scale of the main stem. Such an impact for tributaries was much less pronounced, because of the dominance of surface flow and lower hydrological connectivity with deep groundwater in the latter. Future changes in the river water chemistry linked to climate warming and permafrost thaw at the scale of the whole river basin are likely to stem from changes in the spatial pattern of dominant vegetation as well as the permafrost regime. We argue that comparable studies of large, permafrost-affected rivers during contrasting seasons, including winter baseflow, should allow efficient prediction of future changes in riverine 'inorganic' hydrochemistry induced by permafrost thaw

    A snap-shot assessment of carbon emission and export in a pristine river draining permafrost peatlands (Taz River, Western Siberia)

    Get PDF
    Mobilization of dissolved organic carbon (DOC) and CO2 from the frozen peat to surface waters in the permafrost zone of high latitude regions is expected to enhance under on-going permafrost thaw and active layer thickness deepening. Here we explored one of the most remote, pristine, unregulated and yet environmentally important rivers in western Siberia (Taz). This subarctic river drains through forested and tundra peat bogs over a gradient of permafrost and climate and likely acts as an important conduit of CO2 to the atmosphere and carbon and nutrient exporter to the Arctic Ocean. In a snapshot study during end of spring flood–beginning of summer baseflow (July 2019), we monitored daytime CO2 and CH4 concentrations and measured CO2 emissions using floating chambers in the main stem (700 km from the upper reaches to the mouth) and 16 main tributaries and we also assessed day/night variations in the emissions. We further tested the impact of land cover parameters of the watershed and tributaries. Based on regular monitoring of the terminal (gauging) station, we quantified the C export to the Arctic Ocean during the study period. We revealed sizable CO2 emissions from the main stem and tributaries (1.0 ± 0.4 and 1.8 ± 0.6 g C-CO2 m−2 d−1, respectively). The CO2 concentrations positively correlated with dissolved organic carbon (DOC), whereas the CH4 concentrations could be partially controlled by dissolved nutrients (N, P) and proportion of light coniferous forest at the watershed. The overall C emission from the water surfaces (4,845 km2) of the Taz basin (150,000 km2) during open water period (6 months, May to October) was estimated as 0.92 Tg C (>99.5% C-CO2, <0.5% C-CH4) which is twice higher than the total dissolved C (organic and inorganic) riverine export flux during the same period. Applying a “substituting space for time” approach for northern and southern parts of the river basin, we suggest that the current riverine CO2 emission may increase 2 to 3 fold in the next decades due to on-going climate warming and permafrost thaw. When integrating the obtained results into global models of C and biogeochemical cycle in the Arctic and subarctic region, the use of the Taz River as a representative example of continental planes should help to estimate the consequences of frozen peatland thaw on CO2 cycle in the Arctic and subarctic regions

    Carbon emission from Western Siberian inland waters

    Get PDF
    High-latitude regions play a key role in the carbon (C) cycle and climate system. An important question is the degree of mobilization and atmospheric release of vast soil C stocks, partly stored in permafrost, with amplified warming of these regions. A fraction of this C is exported to inland waters and emitted to the atmosphere, yet these losses are poorly constrained and seldom accounted for in assessments of high-latitude C balances. This is particularly relevant for Western Siberia, with its extensive peatland C stocks, which can be strongly sensitive to the ongoing changes in climate. Here we quantify C emission from inland waters, including the Ob' River (Arctic's largest watershed), across all permafrost zones of Western Siberia. We show that the inland water C emission is high (0.08-0.10 Pg C yr(-1)) and of major significance in the regional C cycle, largely exceeding (7-9 times) C export to the Arctic Ocean and reaching nearly half (35-50%) of the region's land C uptake. This important role of C emission from inland waters highlights the need for coupled land-water studies to understand the contemporary C cycle and its response to warming. Rivers and lakes are thought to be a major conduit of loss for the massive amounts of carbon locked away in high-latitude systems, but such losses are poorly constrained. Here the authors quantify carbon emissions from rivers and lakes across Western Siberia, finding that emissions are high and exceed carbon export to the Arctic Ocean

    Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers

    Get PDF
    Analysis of organic and inorganic carbon (DOC and DIC, respectively), pH, Na, K, Ca, Mg, Cl, SO<sub>4</sub> and Si in ~ 100 large and small rivers (< 10 to &le; 150 000 km<sup>2</sup>) of western Siberia sampled in winter, spring, and summer over a more than 1500 km latitudinal gradient allowed establishing main environmental factors controlling the transport of river dissolved components in this environmentally important region, comprising continuous, discontinuous, sporadic and permafrost-free zones. There was a significant latitudinal trend consisting in a general decrease in DOC, DIC, SO<sub>4</sub>, and major cation (Ca, Mg, Na, K) concentration northward, reflecting the interplay between groundwater feeding (detectable mostly in the permafrost-free zone, south of 60° N) and surface flux (in the permafrost-bearing zone). The northward decrease in concentration of inorganic components was strongly pronounced both in winter and spring, whereas for DOC, the trend of concentration decrease with latitude was absent in winter, and less pronounced in spring flood than in summer baseflow. The most significant decrease in K concentration from the southern (< 59° N) to the northern (61–67° N) watersheds occurs in spring, during intense plant litter leaching. The latitudinal trends persisted for all river watershed size, from < 100 to > 10 000 km<sup>2</sup>. Environmental factors are ranked by their increasing effect on DOC, DIC, δ<sup>13</sup>C<sub>DIC</sub>, and major elements in western Siberian rivers as follows: watershed area < season < latitude. Because the degree of the groundwater feeding is different between large and small rivers, we hypothesize that, in addition to groundwater feeding of the river, there was a significant role of surface and shallow subsurface flow linked to plant litter degradation and peat leaching. We suggest that plant-litter- and topsoil-derived DOC adsorbs on clay mineral horizons in the southern, permafrost-free and discontinuous/sporadic permafrost zone but lacks the interaction with minerals in the continuous permafrost zone. It can be anticipated that, under climate warming in western Siberia, the maximal change will occur in small (< 1000 km<sup>2</sup> watershed) rivers DOC, DIC and ionic composition and this change will be mostly pronounced in summer

    Carbon emission and export from the Ket River, western Siberia

    Get PDF
    Despite recent progress in the understanding of the carbon (C) cycle of Siberian permafrost-affected rivers, spatial and seasonal dynamics of C export and emission from medium-sized rivers (50 000–300 000 km2 watershed area) remain poorly known. Here we studied one of the largest tributaries of the Ob River, the Ket River (watershed = 94 000 km2), which drains through pristine taiga forest of the boreal zone in the West Siberian Lowland (WSL). We combined continuous and discrete measurements of carbon dioxide (CO2) concentration using submersible CO2 sensor and floating chamber flux (FCO2), with methane (CH4), dissolved organic and inorganic C (DOC and DIC, respectively), particulate organic C and total bacterial concentrations over an 800 km transect of the Ket River main stem and its 26 tributaries during spring flood (May 2019) and 12 tributaries during summer baseflow (end of August–beginning of September 2019). The partial pressure of CO2 (pCO2) was lower and less variable in the main stem (2000 to 2500 µatm) compared to that in the tributaries (2000 to 5000 µatm). In the tributaries, the pCO2 was 40 % higher during baseflow compared to spring flood, whereas in the main stem, it did not vary significantly across the seasons. The methane concentration in the main stem and tributaries was a factor of 300 to 1900 (flood period) and 100 to 150 times lower than that of CO2 and ranged from 0.05 to 2.0 µmol L−1. The FCO2 ranged from 0.4 to 2.4 g C m−2 d−1 in the main channel and from 0.5 to 5.0 g C m−2 d−1 in the tributaries, being highest during August in the tributaries and weakly dependent on the season in the main channel. During summer baseflow, the DOC aromaticity, bacterial number, and needleleaf forest coverage of the watershed positively affected CO2 concentrations and fluxes. We hypothesize that relatively low spatial and seasonal variability in FCO2 of the Ket River is due to a flat homogeneous landscape (bogs and taiga forest) that results in long water residence times and stable input of allochthonous dissolved organic matter (DOM), which dominate the FCO2. The open water period (May to October) C emission from the fluvial network (main stem and tributaries) of the Ket River was estimated to 127 ± 11 Gg C yr−1, which is lower than the downstream dissolved and particulate C export during the same period. The estimated fluvial C emissions are highly conservative and contain uncertainties linked to ignoring hotspots and hot moments of emissions, notably in the floodplain zone. This stresses the need to improve the temporal resolution of FCO2 and water coverage across seasons and emphasizes the important role of WSL rivers in the release of CO2 into the atmosphere.</p

    Seasonal dynamics of organic carbon and metals in thermokarst lakes from the discontinuous permafrost zone of western Siberia

    Get PDF
    Despite relatively good knowledge of the biogeochemistry of Siberian thermokarst lakes during summer base flow, their seasonal dynamics remains almost unexplored. This work describes the chemical composition of 130 thermokarst lakes ranging in size from a few m2 to several km2, located in the discontinuous permafrost zone. Lakes were sampled during spring flood, just after the ice break (early June), the end of summer (August), the beginning of ice formation (October) and during the full freezing season in winter (February). The lakes larger than 1000m2 did not exhibit any statistically significant control of the lake size on dissolved organic carbon (DOC), the major and trace element concentrations over three major open water seasons. On the annual scale, the majority of dissolved elements including organic carbon increased their concentration from 30 to 500 %, with a statistically significant (p summer>autumn>winter. The ice formation in October included several stages: first, surface layer freezing followed by crack (fissure) formation with unfrozen water from the deeper layers spreading over the ice surface. This water was subsequently frozen and formed layered ice rich in organic matter. As a result, the DOC and metal (Mn, Fe, Ni, Cu, Zn, As, Ba and Pb) concentrations were highest near the surface of the ice column (0 to 20 cm) and decreased by a factor of 2 towards the bottom. The main implications of discovered freeze-driven solute concentrations in thermokarst lake waters are enhanced colloidal coagulation and removal of dissolved organic matter and associated insoluble metals from the water column to the sediments. The measured distribution coefficients of a TE between amorphous organo-ferric coagulates and lake water (<0.45 μm) were similar to those reported earlier for Fe-rich colloids and low molecular weight (<1 kDa, or <1–2 nm) fractions of thermokarst lake waters, suggesting massive coprecipitation of TE with amorphous Fe oxyhydroxide stabilized by organic matter. Although the concentration of most elements was lowest in spring, this period of maximal water coverage of land created a significant reservoir of DOC and soluble metals in the water column that can be easily mobilized to the hydrological network. The highest DOC concentration observed in the smallest (<100m2) water bodies in spring suggests their strongly heterotrophic status and, therefore, a potentially elevated CO2 flux from the lake surface to the atmosphere
    corecore