162 research outputs found

    Kétéltűek vándorlási útvonalának feltérképezése

    Get PDF

    Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress

    Get PDF
    Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro. In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research

    Characterization of globulin storage proteins of a low prolamin cereal species in relation to celiac disease

    Get PDF
    Brachypodium distachyon, a small annual grass with seed storage globulins as primary protein reserves was used in our study to analyse the toxic nature of non-prolamin seed storage proteins related to celiac disease. The main storage proteins of B. distachyon are the 7S globulin type proteins and the 11S, 12S seed storage globulins similar to oat and rice. Immunoblot analyses using serum samples from celiac disease patients were carried out followed by the identification of immune-responsive proteins using mass spectrometry. Serum samples from celiac patients on a gluten-free diet, from patients with Crohn's disease and healthy subjects, were used as controls. The identified proteins with intense serum-IgA reactivity belong to the 7S and 11-12S seed globulin family. Structure prediction and epitope predictions analyses confirmed the presence of celiac disease-related linear B cell epitope homologs and the presence of peptide regions with strong HLA-DQ8 and DQ2 binding capabilities. These results highlight that both MHC-II presentation and B cell response may be developed not only to prolamins but also to seed storage globulins. This is the first study of the non-prolamin type seed storage proteins of Brachypodium from the aspect of the celiac disease

    Wolbachia Infection Decreased the Resistance of Drosophila to Lead

    Get PDF
    Background: The heavy metal lead has been shown to be associated with a genotoxic risk. Drosophila melanogaster is a model organism commonly utilized in genetic toxicology testing. The endosymbionts — Wolbachia are now very common in both wild populations and laboratory stocks of Drosophila. Wolbachia may induce resistance to pathogenic viruses, filarial nematodes and Plasmodium in fruit fly and mosquito hosts. However the effect of Wolbachia infection on the resistance of their hosts to heavy metal is unknown. Methodology/Principal Findings: Manipulating the lead content in the diet of Drosophila melanogaster, we found that lead consumption had no different effects on developmental time between Wolbachia-infected (Dmel wMel) and –uninfected (Dmel T) flies. While in Pb-contaminated medium, significantly reduced amount of pupae and adults of Dmel wMel were emerged, and Dmel wMel adults had significantly shorter longevity than that of Dmel T flies. Lead infusion in diet resulted in significantly decreased superoxide dismutase (SOD) activity in Dmel T flies (P,0.05), but not in Dmel wMel flies. Correspondingly, lead cultures induced a 10.8 fold increase in malonaldehyde (MDA) contents in Dmel T larvae (P,0.05). While in Dmel wMel larvae, it resulted in only a 1.3 fold increase. By quantitative RT-PCR, we showed that lead infused medium caused significantly increased expression level of relish and CecA2 genes in Dmel T flies (P,0.01). Lead cultures did not change dramatically the expression of these genes in Dmel wMel flies

    Carbon Nanotube Solar Cells

    Get PDF
    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement

    The effect of electrical neurostimulation on collateral perfusion during acute coronary occlusion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Electrical neurostimulation can be used to treat patients with refractory angina, it reduces angina and ischemia. Previous data have suggested that electrical neurostimulation may alleviate myocardial ischaemia through increased collateral perfusion. We investigated the effect of electrical neurostimulation on functional collateral perfusion, assessed by distal coronary pressure measurement during acute coronary occlusion. We sought to study the effect of electrical neurostimulation on collateral perfusion.</p> <p>Methods</p> <p>Sixty patients with stable angina and significant coronary artery disease planned for elective percutaneous coronary intervention were split in two groups. In all patients two balloon inflations of 60 seconds were performed, the first for balloon dilatation of the lesion (first episode), the second for stent delivery (second episode). The Pw/Pa ratio (wedge pressure/aortic pressure) was measured during both ischaemic episodes. Group 1 received 5 minutes of active neurostimulation before plus 1 minute during the first episode, group 2 received 5 minutes of active neurostimulation before plus 1 minute during the second episode.</p> <p>Results</p> <p>In group 1 the Pw/Pa ratio decreased by 10 ± 22% from 0.20 ± 0.09 to 0.19 ± 0.09 (p = 0.004) when electrical neurostimulation was deactivated. In group 2 the Pw/Pa ratio increased by 9 ± 15% from 0.22 ± 0.09 to 0.24 ± 0.10 (p = 0.001) when electrical neurostimulation was activated.</p> <p>Conclusion</p> <p>Electrical neurostimulation induces a significant improvement in the Pw/Pa ratio during acute coronary occlusion.</p

    Analysis of conserved microRNAs in floral tissues of sexual and apomictic Boechera species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apomixis or asexual seed formation represents a potentially important agronomic trait whose introduction into crop plants could be an effective way to fix and perpetuate a desirable genotype through successive seed generations. However, the gene regulatory pathways underlying apomixis remain unknown. In particular, the potential function of microRNAs, which are known to play crucial roles in many aspects of plant growth and development, remains to be determined with regards to the switch from sexual to apomictic reproduction.</p> <p>Results</p> <p>Using bioinformatics and microarray validation procedures, 51 miRNA families conserved among angiosperms were identified in <it>Boechera</it>. Microarray assay confirmed 15 of the miRNA families that were identified by bioinformatics techniques. 30 cDNA sequences representing 26 miRNAs could fold back into stable pre-miRNAs. 19 of these pre-miRNAs had miRNAs with <it>Boechera</it>-specific nucleotide substitutions (NSs). Analysis of the Gibbs free energy (ΔG) of these pre-miRNA stem-loops with NSs showed that the <it>Boechera</it>-specific miRNA NSs significantly (p ≤ 0.05) enhance the stability of stem-loops. Furthermore, six transcription factors, the Squamosa promoter binding protein like SPL6, SPL11 and SPL15, Myb domain protein 120 (MYB120), RELATED TO AP2.7 DNA binding (RAP2.7, TOE1 RAP2.7) and TCP family transcription factor 10 (TCP10) were found to be expressed in sexual or apomictic ovules. However, only SPL11 showed differential expression with significant (p ≤ 0.05) up-regulation at the megaspore mother cell (MMC) stage of ovule development in apomictic genotypes.</p> <p>Conclusions</p> <p>This study constitutes the first extensive insight into the conservation and expression of microRNAs in <it>Boechera </it>sexual and apomictic species. The miR156/157 target squamosa promoter binding protein-like 11 (SPL11) was found differentially expressed with significant (p ≤ 0.05) up-regulation at the MMC stage of ovule development in apomictic genotypes. The results also demonstrate that nucleotide changes in mature miRNAs significantly (p ≤ 0.05) enhance the thermodynamic stability of pre-miRNA stem-loops.</p
    • …
    corecore