42 research outputs found

    Antimicrobial Activity and Genetic Profile of Enteroccoci Isolated from Hoopoes Uropygial Gland

    Get PDF
    Symbiotic microorganisms may be directly transferred from parents to offspring or acquired from a particular environment that animals may be able to select. If benefits for hosts vary among microbial strains, natural selection may favour hosts holding the most beneficial one. Enterococci symbionts living in the hoopoe (Upupa epops) uropygial gland are able to synthesise bacteriocins (antimicrobial peptides that inhibit the growth of competitor bacteria). We explored variability in genetic profile (through RAPD-PCR analyses) and antimicrobial properties (by performing antagonistic tests against ten bacterial indicator strains) of the different isolates obtained from the uropygial glands of hoopoe females and nestlings. We found that the genetic profile of bacterial isolates was related to antimicrobial activity, as well as to individual host identity and the nest from which samples were obtained. This association suggest that variation in the inhibitory capacity of Enterococci symbionts should be under selection.This work was financed by Ministerio de Ciencia e Innovación (Spanish National Government) and FEDER founds (projects CGL2010-19233-C03-01, and CGL2010-19233-C03-03), and Junta de Andalucía (P09-RNM-4557)

    Inverse Modeling for MEG/EEG data

    Full text link
    We provide an overview of the state-of-the-art for mathematical methods that are used to reconstruct brain activity from neurophysiological data. After a brief introduction on the mathematics of the forward problem, we discuss standard and recently proposed regularization methods, as well as Monte Carlo techniques for Bayesian inference. We classify the inverse methods based on the underlying source model, and discuss advantages and disadvantages. Finally we describe an application to the pre-surgical evaluation of epileptic patients.Comment: 15 pages, 1 figur

    Acquisition of uropygial gland microbiome by hoopoe nestlings

    Get PDF
    Mutualistic symbioses between animals and bacteria depend on acquisition of appropriate symbionts while avoiding exploitation by non-beneficial microbes. The mode of acquisition of symbionts would determine, not only the probability of encountering but also evolutionary outcomes of mutualistic counterparts. The microbiome inhabiting the uropygial gland of the European hoopoe (Upupa epops) includes a variety of bacterial strains, some of them providing antimicrobial benefits. Here, the mode of acquisition and stability of this microbiome is analyzed by means of Automated rRNA Intergenic Spacer Analysis and two different experiments. The first experiment impeded mothers’ access to their glands, thus avoiding direct transmission of microorganisms from female to offspring secretions. The second experiment explored the stability of the microbiomes by inoculating glands with secretions from alien nests. The first experiment provoked a reduction in similarity of microbiomes of mother and nestlings. Interestingly, some bacterial strains were more often detected when females had not access to their glands, suggesting antagonistic effects among bacteria from different sources. The second experiment caused an increase in richness of the microbiome of receivers in terms of prevalence of Operational Taxonomic Units (OTUs) that reduced differences in microbiomes of donors and receivers. That occurred because OTUs that were present in donors but not in receivers incorporated to the microbiome of the latter, which provoked that cross-inoculated nestlings got similar final microbiomes that included the most prevalent OTUs. The results are therefore consistent with a central role of vertical transmission in bacterial acquisition by nestling hoopoes and support the idea that the typical composition of the hoopoe gland microbiome is reached by the incorporation of some bacteria during the nestling period. This scenario suggests the existence of a coevolved core microbiome composed by a mix of specialized vertically transmitted strains and facultative symbionts able to coexist with them. The implications of this mixed mode of transmission for the evolution of the mutualism are discussedMinisterio de Ciencia e Innovación (España)Junta de Andalucí

    The Hoopoe's Uropygial Gland Hosts a Bacterial Community Influenced by the Living Conditions of the Bird

    Get PDF
    Molecular methods have revealed that symbiotic systems involving bacteria are mostly based on whole bacterial communities. Bacterial diversity in hoopoe uropygial gland secretion is known to be mainly composed of certain strains of enterococci, but this conclusion is based solely on culture-dependent techniques. This study, by using culture-independent techniques (based on the 16S rDNA and the ribosomal intergenic spacer region) shows that the bacterial community in the uropygial gland secretion is more complex than previously thought and its composition is affected by the living conditions of the bird. Besides the known enterococci, the uropygial gland hosts other facultative anaerobic species and several obligated anaerobic species (mostly clostridia). The bacterial assemblage of this community was largely invariable among study individuals, although differences were detected between captive and wild female hoopoes, with some strains showing significantly higher prevalence in wild birds. These results alter previous views on the hoopoe-bacteria symbiosis and open a new window to further explore this system, delving into the possible sources of symbiotic bacteria (e.g. nest environments, digestive tract, winter quarters) or the possible functions of different bacterial groups in different contexts of parasitism or predation of their hoopoe host.This work was supported by the Ministerio de Ciencia y Tecnología (projects CGL2005-06975/BOSFEDER; CGL2007-61251/BOSFEDER), the Ministerio de Ciencia e Innovación (projects CGL2009-14006/BOSFEDER; CGL2010-19233-C03-01/BOSFEDER; CGL2010-19233-C03-03/BOSFEDER), the Ministerio de Economía y Competitividad (projects CGL2013-48193-C3-1-P/BOSFEDER; CGL2013-48193-C3-2-P/BOSFEDER), and the Junta de Andalucía (RNM 345, P09-RNM-4557). SMRR received a grant from the Ministerio de Ciencia e Innovación (FPI program, BES-2011-047677)

    Habitat-related birdsong divergence: a multi-level study on the influence of territory density and ambient noise in European blackbirds

    Get PDF
    Song plays an important role in avian communication and acoustic variation is important at both the individual and population level. Habitat-related variation between populations in particular can reflect adaptations to the environment accumulated over generations, but this may not always be the case. In this study, we test whether variation between individuals matches local conditions with respect to noise level and territory density to examine whether short-term flexibility could contribute to song divergence at the population level. We conducted a case study on an urban and forest population of the European blackbird and show divergence at the population level (i.e. across habitats) in blackbird song, anthropogenic noise level and territory density. Unlike in several other species, we found a lack of any correlation at the individual level (i.e. across individuals) between song features and ambient noise. This suggests species-specific causal explanations for noise-dependent song differentiation which are likely associated with variation in song-copying behaviour or feedback constraints related to variable singing styles. On the other hand, we found that at the level of individual territories, temporal features, but not spectral ones, are correlated to territory density and seasonality. This suggests that short-term individual variation can indeed contribute to habitat-dependent divergence at the population level. As this may undermine the potential role for song as a population marker, we conclude that more investigations on individual song flexibility are required for a better understanding of the impact of population-level song divergence on hybridisation and speciation

    Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota

    Get PDF
    The microbiome is essential for development, health and homeostasis throughout an animal's life. Yet, the origins and transmission processes governing animal microbiomes remain elusive for non-human vertebrates, oviparous vertebrates in particular. Eggs may function as transgenerational carriers of the maternal microbiome, warranting characterisation of egg microbiome assembly. Here, we investigated maternal and environmental contributions to avian eggshell microbiota in wild passerine birds: woodlark Lullula arborea and skylark Alauda arvensis. Using 16S rRNA gene sequencing, we demonstrated in both lark species, at the population and within-nest levels, that bacterial communities of freshly laid eggs were distinct from the female cloacal microbiome. Instead, soil-borne bacteria appeared to thrive on freshly laid eggs, and eggshell microbiota composition strongly resembled maternal skin, body feather and nest material communities, sources in direct contact with laid eggs. Finally, phylogenetic structure analysis and microbial source tracking underscored species sorting from directly contacting sources rather than in vivo-transferred symbionts. The female-egg-nest system allowed an integrative assessment of avian egg microbiome assembly, revealing mixed modes of symbiont acquisition not previously documented for vertebrate eggs. Our findings illuminated egg microbiome origins, which suggested a limited potential of eggshells for transgenerational transmission, encouraging further investigation of eggshell microbiome functions in vertebrates

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment

    Interaction between central alpha-adrenergic stimulation and endogenous opioids in hypertensive humans

    No full text
    The interaction between endogenous opioids and central alpha2-adrenoreceptors was studied in seven patients with uncomplicated essential hypertension by giving clonidine (0.15 mg i.v.), naloxone (0.4 mg i.v.) and both drugs at the same doses. Data were compared with those after placebo (saline i.v.). The study has a randomized cross-over design and treatments were two days apart. Blood pressure, heart rate, human growth hormone (HGH) and plasma renin activity (PRA) were measured every 7 1/2 , 15 and 30 min respectively over a 2-h period. Clonidine significantly reduced mean blood pressure, increased HGH and did not change heart rate and PRA. Naloxone alone did not change these variables, but when added to clonidine, it caused a further decrease in mean blood pressure, without changing heart rate and PRA and without affecting the HGH increase induced by clonidine. These results suggest that μ opioid receptor blockade does not influence the humoral effect of clonidine, but enhances its hypotensive action. There may be a negative interaction between endogenous opioids and central alpha2-adrenoreceptors in the control of blood pressure
    corecore