18 research outputs found

    Local Motion Planner for Autonomous Navigation in Vineyards with a RGB-D Camera-Based Algorithm and Deep Learning Synergy

    Get PDF
    With the advent of agriculture 3.0 and 4.0, researchers are increasingly focusing on the development of innovative smart farming and precision agriculture technologies by introducing automation and robotics into the agricultural processes. Autonomous agricultural field machines have been gaining significant attention from farmers and industries to reduce costs, human workload, and required resources. Nevertheless, achieving sufficient autonomous navigation capabilities requires the simultaneous cooperation of different processes; localization, mapping, and path planning are just some of the steps that aim at providing to the machine the right set of skills to operate in semi-structured and unstructured environments. In this context, this study presents a low-cost local motion planner for autonomous navigation in vineyards based only on an RGB-D camera, low range hardware, and a dual layer control algorithm. The first algorithm exploits the disparity map and its depth representation to generate a proportional control for the robotic platform. Concurrently, a second back-up algorithm, based on representations learning and resilient to illumination variations, can take control of the machine in case of a momentaneous failure of the first block. Moreover, due to the double nature of the system, after initial training of the deep learning model with an initial dataset, the strict synergy between the two algorithms opens the possibility of exploiting new automatically labeled data, coming from the field, to extend the existing model knowledge. The machine learning algorithm has been trained and tested, using transfer learning, with acquired images during different field surveys in the North region of Italy and then optimized for on-device inference with model pruning and quantization. Finally, the overall system has been validated with a customized robot platform in the relevant environment

    Multi-image Super Resolution of Remotely Sensed Images using Residual Feature Attention Deep Neural Networks

    Get PDF
    Convolutional Neural Networks (CNNs) have been consistently proved state-of-the-art results in image Super-Resolution (SR), representing an exceptional opportunity for the remote sensing field to extract further information and knowledge from captured data. However, most of the works published in the literature have been focusing on the Single-Image Super-Resolution problem so far. At present, satellite based remote sensing platforms offer huge data availability with high temporal resolution and low spatial resolution. In this context, the presented research proposes a novel residual attention model (RAMS) that efficiently tackles the multi-image super-resolution task, simultaneously exploiting spatial and temporal correlations to combine multiple images. We introduce the mechanism of visual feature attention with 3D convolutions in order to obtain an aware data fusion and information extraction of the multiple low-resolution images, transcending limitations of the local region of convolutional operations. Moreover, having multiple inputs with the same scene, our representation learning network makes extensive use of nestled residual connections to let flow redundant low-frequency signals and focus the computation on more important high-frequency components. Extensive experimentation and evaluations against other available solutions, either for single or multi-image super-resolution, have demonstrated that the proposed deep learning-based solution can be considered state-of-the-art for Multi-Image Super-Resolution for remote sensing applications

    A Cost-Effective Person-Following System for Assistive Unmanned Vehicles with Deep Learning at the Edge

    Get PDF
    The vital statistics of the last century highlight a sharp increment of the average age of the world population with a consequent growth of the number of older people. Service robotics applications have the potentiality to provide systems and tools to support the autonomous and self-sufficient older adults in their houses in everyday life, thereby avoiding the task of monitoring them with third parties. In this context, we propose a cost-effective modular solution to detect and follow a person in an indoor, domestic environment. We exploited the latest advancements in deep learning optimization techniques, and we compared different neural network accelerators to provide a robust and flexible person-following system at the edge. Our proposed cost-effective and power-efficient solution is fully-integrable with pre-existing navigation stacks and creates the foundations for the development of fully-autonomous and self-contained service robotics applications

    Local Planners with Deep Reinforcement Learning for Indoor Autonomous Navigation

    Get PDF
    Autonomous indoor navigation requires an elab- orated and accurate algorithmic stack, able to guide robots through cluttered, unstructured, and dynamic environments. Global and local path planning, mapping, localization, and decision making are only some of the required layers that undergo heavy research from the scientific community to achieve the requirements for fully functional autonomous navigation. In the last years, Deep Reinforcement Learning (DRL) has proven to be a competitive short-range guidance system solution for power-efficient and low computational cost point-to-point local planners. One of the main strengths of this approach is the possibility to train a DRL agent in a simulated environment that encapsulates robot dynamics and task constraints and then deploy its learned point-to-point navigation policy in a real setting. However, despite DRL easily integrates complex mechanical dynamics and multimodal signals into a single model, the effect of different sensor data on navigation performance has not been investigated yet. In this paper, we compare two different DRL navigation solutions that leverage LiDAR and depth camera information, respectively. The agents are trained in the same simulated environment and tested on a common benchmark to highlight the strengths and criticalities of each technique

    UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture

    Full text link
    Precision agriculture is considered to be a fundamental approach in pursuing a low-input, high-efficiency, and sustainable kind of agriculture when performing site-specific management practices. To achieve this objective, a reliable and updated description of the local status of crops is required. Remote sensing, and in particular satellite-based imagery, proved to be a valuable tool in crop mapping, monitoring, and diseases assessment. However, freely available satellite imagery with low or moderate resolutions showed some limits in specific agricultural applications, e.g., where crops are grown by rows. Indeed, in this framework, the satellite's output could be biased by intra-row covering, giving inaccurate information about crop status. This paper presents a novel satellite imagery refinement framework, based on a deep learning technique which exploits information properly derived from high resolution images acquired by unmanned aerial vehicle (UAV) airborne multispectral sensors. To train the convolutional neural network, only a single UAV-driven dataset is required, making the proposed approach simple and cost-effective. A vineyard in Serralunga d'Alba (Northern Italy) was chosen as a case study for validation purposes. Refined satellite-driven normalized difference vegetation index (NDVI) maps, acquired in four different periods during the vine growing season, were shown to better describe crop status with respect to raw datasets by correlation analysis and ANOVA. In addition, using a K-means based classifier, 3-class vineyard vigor maps were profitably derived from the NDVI maps, which are a valuable tool for growers

    Exploring Subgroup Performance In End-to-End Speech Models

    Get PDF
    End-to-End Spoken Language Understanding models are generally evaluated according to their overall accuracy, or separately on (a priori defined) data subgroups of interest. We propose a technique for analyzing model performance at the subgroup level, which considers all subgroups that can be defined via a given set of metadata and are above a specified minimum size. The metadata can represent user characteristics, recording conditions, and speech targets. Our technique is based on advances in model bias analysis, enabling efficient exploration of resulting subgroups. A fine-grained analysis reveals how model performance varies across subgroups, identifying modeling issues or bias towards specific subgroups. We compare the subgroup-level performance of models based on wav2vec 2.0 and HuBERT on the Fluent Speech Commands dataset. The experimental results illustrate how subgroup-level analysis reveals a finer and more complete picture of performance changes when models are replaced, automatically identifying the subgroups that most benefit or fail to benefit from the chang

    Machine Learning Algorithms and their Embedded Implementation for Service Robotics Applications

    No full text
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Efficient-CapsNet: Capsule Network with Self-Attention Routing

    Get PDF
    Deep convolutional neural networks, assisted by architectural design strategies, make extensive use of data augmentation techniques and layers with a high number of feature maps to embed object transformations. That is highly inefficient and for large datasets implies a massive redundancy of features detectors. Even though capsules networks are still in their infancy, they constitute a promising solution to extend current convolutional networks and endow artificial visual perception with a process to encode more efficiently all feature affine transformations. Indeed, a properly working capsule network should theoretically achieve higher results with a considerably lower number of parameters count due to intrinsic capability to generalize to novel viewpoints. Nevertheless, little attention has been given to this relevant aspect. In this paper, we investigate the efficiency of capsule networks and, pushing their capacity to the limits with an extreme architecture with barely 160K parameters, we prove that the proposed architecture is still able to achieve state-of-the-art results on three different datasets with only 2% of the original CapsNet parameters. Moreover, we replace dynamic routing with a novel non-iterative, highly parallelizable routing algorithm that can easily cope with a reduced number of capsules. Extensive experimentation with other capsule implementations has proved the effectiveness of our methodology and the capability of capsule networks to efficiently embed visual representations more prone to generalization.Comment: Accepted by Scientific Report
    corecore