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ABSTRACT

End-to-End Spoken Language Understanding models are
generally evaluated according to their overall accuracy, or
separately on (a priori defined) data subgroups of interest.
We propose a technique for analyzing model performance at
the subgroup level, which considers all subgroups that can be
defined via a given set of metadata and are above a specified
minimum size. The metadata can represent user characteris-
tics, recording conditions, and speech targets. Our technique
is based on advances in model bias analysis, enabling ef-
ficient exploration of resulting subgroups. A fine-grained
analysis reveals how model performance varies across sub-
groups, identifying modeling issues or bias towards specific
subgroups.

We compare the subgroup-level performance of models
based on wav2vec 2.0 and HuBERT on the Fluent Speech
Commands dataset. The experimental results illustrate how
subgroup-level analysis reveals a finer and more complete
picture of performance changes when models are replaced,
automatically identifying the subgroups that most benefit or
fail to benefit from the change.

Index Terms— End-to-End Speech Representation,
Model Bias, Divergence, Subgroup detection

1. INTRODUCTION

End-to-End Spoken Language Understanding (E2E SLU)
models achieve state-of-the-art performance on Natural Lan-
guage Understanding tasks without converting speech into
the underlying text. Speech data often comes with additional
information about the speaker (e.g., the age), recording con-
ditions (e.g., the noise level), or task characteristics (e.g., the
uttered intent), among other things. We define this informa-
tion as speech metadata. Combinations of metadata values
identify data subgroups. Typically, model performance is
evaluated either on the whole testing set or on relevant data
subgroups identified in advance.

∗ Equal contribution.

Subgroup Sup acc ∆acc t
{age=22-40, gender=male, loc=none,
speakRate=high, tot silence=high} 0.03 74.79 -18.38 4.7

{action=increase, gender=male,
speakRate=high} 0.03 74.81 -18.36 4.9

Table 1. wav2vec 2.0 large accuracy gap (∆acc) for two iden-
tified subgroups compared to overall test accuracy.

We introduce efficient techniques for comparing model
performance on all data subgroups that are induced by the
available metadata. Since the number of subgroups is expo-
nential in the number of metadata attributes, the naive enu-
meration and evaluation of subgroups is unfeasible. Our ap-
proach leverages advances in model bias analysis [1]. The
basic insight is that while the number of subgroups is expo-
nential, the number of subgroups above a specified size (for
instance, containing at least 0.1% of the dataset) is gener-
ally not. These subgroups are called the frequent subgroups:
they are the subgroups with both practical and statistical sig-
nificance. Our approach allows measuring and comparing
model performance on all frequent subgroups. Among other
things, this enables exploring the impact of sensitive attributes
such as gender in isolation or in conjunction with other at-
tributes. Table 1 reports an example of problematic subgroups
where we find the model underperforming compared to over-
all statistics.

Our main contributions are as follows. First, we describe
how to study the subgroup-level performance of speech E2E
models, and we identify data subgroups on which a single
model performs better or worse than average. Second, we
extend the approach to the comparison of models, and we
identify the subgroups on which performance most improves,
or suffers, when a model is replaced with another. Lastly,
we benchmark our proposed approach on the wav2vec 2.0 [2]
and HuBERT [3] models, and the Fluent Speech Commands
dataset [4]. Our approach can easily identify performance im-
balances across subgroups defined by demographic features.
We further show that an increase in model size and complex-
ity does not necessarily yield a mitigation of model bias.



2. RELATED WORK

Prior works [5, 6, 7, 8, 9, 10, 11] have studied the presence
of model bias and unfairness in data subgroups, mainly con-
sidering gender, accents, or age features. These related works
are rooted in specific combinations of features (e.g., age, gen-
der or skin tones [9], demographics, and geolocation [11]).
In [11], the authors also propose to identify under-performing
subgroups automatically by clustering speaker embeddings.
However, subgroups are not interpretable. Differently, we
slice over metadata, thus allowing their direct interpretation.

Recently, several works addressed the automatic iden-
tification of subgroups with anomalous behaviors on struc-
tured data [1, 12, 13, 14]. Our approach, which deals with
speech data, is based on DIVEXPLORER [1] and proposes
a method to allow model comparison on subgroups. While
the heuristic-driven exploration approaches of [13, 14] do not
support model comparison, DIVEXPLORER [1] is the only
one that can support it because of its exhaustive exploration
of frequent subgroups.

3. MEASURING SUBGROUP BEHAVIOR

We define data subgroups via itemsets, which are sets of at-
tribute = value pairs. For a speech recognition model, the
divergence of a data subgroup is the difference between the
model performance on the subgroup and the model perfor-
mance on the whole dataset [1]. Given two models, the sub-
group gain is the difference in performance between the two
models on the subgroup.

Datasets, metadata, and items. We annotate speech data
with metadata consisting of interpretable attributes. They de-
scribe speaker-related features such as gender or age, and
speaking and recording features, such as type of environment,
presence and type of noise, and speaking rate. We also collect
task-specific features, e.g., an intent description.

We denote by D our dataset, by A its set of metadata at-
tributes, and by I its set of items: an item has the form a = v,
for an attribute a ∈ A and a value v. If gender and age
are attributes, examples of items are gender = female and
age ∈ [20−40]. The subgroup corresponding to an item is the
portion of the dataset that satisfies it. For each attribute, we
require that the item subgroups form a partition of the dataset.
For instance, for the age attribute, the age ranges need to be
non-overlapping, and their union must cover all possible ages.

An item enables us to slice, or select, a subset of the data
with respect to one attribute. We can also slice the data with
respect to multiple attributes by considering itemsets, which
are collections of zero or more items, each item referring to
a distinct attribute. An example of itemset is {gender =
male, age ∈ [10, 20]}. For an itemset I , we let the support
of I be the fraction of the dataset that corresponds to I , that
is, the ratio between the size of the subgroup satisfying I and
the size of the whole dataset. Thus, an itemset with support

of 0.02 will appear in 2% of the dataset. The empty itemset
corresponds to the entire dataset and has support 1.

Subgroup divergence and gain. Let f be a performance
measure for a downstream SLU task, so that for a model M
and a subgroup (i.e., itemset) I , f(I,M) is the performance
of the model on the subgroup. The performance can reflect
correctness, top-n correctness, or other standard measures of
model performance. The divergence of itemset I with respect
to model M is the difference between the model performance
over I , and the one over the whole dataset [1]:

divf (I,M) = f(I,M)− f(∅,M) . (1)

We define the gain from model M1 to model M2 for itemset
I as the increase in performance on I obtained by replacing
model M1 with model M2:

gainf (I,M1,M2) = f(I,M2)− f(I,M1) . (2)

We leverage DIVEPLORER [1] to identify itemsets with
large absolute-value divergence or gain. DIVEXPLORER inte-
grates frequent pattern mining techniques to efficiently extract
all itemsets above a given support threshold together their di-
vergence. The support threshold binds the exploration and
ensures that the returned itemsets contain sufficient data to be
statistically and operationally significant.

We are also interested in characterizing the role of items
in yielding itemsets with high divergence or gain. Let g(I)
be the metric of interest for itemsets (g can be divergence or
gain). Following [1], we define the contribution of i ∈ I
to g(I) using the game-theoretical notion of Shapley value,
attributing to a “team” J ⊆ I of items the contribution g(J).
The Shapley value sg(i, I) of i in I captures the notion of
how much i contributed to the divergence or gain of I , and
we have

∑
i∈I sg(i, I) = g(I). We also consider the global

Shapley value Sg(i) of an item i, which measures the average
effect of adding item i to all other compatible itemsets [1].

4. EXPERIMENTAL RESULTS

We evaluate the performance of our approach by showing its
ability to reveal sources of error (§4.2), analyzing how model
size impacts performance at the subgroup level (§4.3), com-
paring subgroup behavior across different models (§4.4), and
studying the attribute role (§4.5).1

4.1. Data and Models

Dataset. FLUENT SPEECH COMMANDS (FSC) [4] is one of
the most used datasets for the Intent Classification (IC) task.
We analyze the test set containing 3793 audio samples from
10 speakers. Each audio sample is associated with three slots:
action, object, and location. The intent is the combination

1Code at https://github.com/dbdmg/divergence-in-speech-systems.

https://github.com/dbdmg/divergence-in-speech-systems


Subgroups Sup gainacc w2v2-b acc w2v2-l acc
↑ {action=increase, duration=low, loc=none, speakRate trim=low, trim dur=low} 0.03 22.69 75.63 98.32
= {action=increase, gender=male, n words=low, speakRate=high} 0.03 0.0 75.41 75.41
↓ {action=activate, gender=male, speakRate=low} 0.03 -20.97 96.77 75.81

Subgroups Sup gainacc w2v2-b acc hub-b acc
↑ {gender=male, loc=none, n words=low, tot silence=high, trim dur=low} 0.03 31.20 64.00 95.20
= {action=decrease, n words=high, speakRate trim=medium} 0.04 0.0 95.49 95.49
↓ {action=decrease, age=22-40, loc=washroom} 0.03 -1.68 100.00 98.32

Table 2. Performance gain comparing wav2vec 2.0 base to large (top) and wav2vec 2.0 base to HuBERT base (bottom) on
itemsets where performance increases (↑), decreases (↓), or remains equal (=).

Subgroups
gender=female gender=male

w2v2-b w2v2-l w2v2-b w2v2-l
{action=increase, loc=none, n words=low, trim dur=low} 68.29 88.62 (↑) 73.48 81.82 (↑)
{action=increase, n words=low, speakRate=high} 78.41 90.91 (↑) 75.41 75.41 (=)
{action=activate, n words=medium} 96.17 95.22 (↓) 94.54 78.14 (↓)

Table 3. Impact of gender on accuracy for wav2vec 2.0 base and large, increase (↑), decrease (↓) or equal (=) performance.

of the three slots (e.g., “turn on the lights in the kitchen” has
the label “action: activate, object: lights, location: kitchen”).
The evaluation metric is intent accuracy.
Models. We consider the monolingual wav2vec 2.0 [2] and
HuBERT [3] models for two different sizes, base and large.
We use the public fine-tuned checkpoints [15].
Metadata. We extract and adopt the following metadata.
Speaker Demographics: we consider the self-declared gender
and age range, already available in FSC [4].2 The fluency
level and the first language are not included since they are
constant on the whole test set.
Speaking and recording conditions: we consider the duration
of silences and the duration of the audio sample (total and
trimmed without initial silences), the number of words, and
the speaking rate (word per second).
E2E Task: we consider the three target slots to evaluate
whether specific intents are particularly challenging.

We discretize continuous metadata in three ranges using
frequency-based discretization, and we rename the ranges as
‘low’, ‘medium’, and ‘high’. In the following analysis, we
explore subgroups with at least a support of s=0.03, corre-
sponding to more than one hundred utterances.

4.2. Individual Model Debugging

We investigate the sources of errors for wav2vec 2.0 large
model. Table 1 reports the two itemsets with the highest neg-
ative divergence. These define the subgroups on which the
model performs worse than the average. The groups consist
of male speakers with a high speaking rate and either (i) age
between 22 and 40, high duration of silences and “none” lo-
cation (1st subgroup, accuracy lower by 18.38%), or (ii) in-
crease action (2nd subgroup, accuracy lower by 18.36%).

2We limit gender to a binary variable under the current data regime.

0 5
gender=female

loc=none
trim_dur=low
n_words=low

action=increase

0 5
gender=male

loc=none
trim_dur=low
n_words=low

action=increase

Fig. 1. Item contribution when scaling up wav2vec 2.0,
for the same subgroup but including gender=female (left,
gainacc=20.3%) or gender=male (right, gainacc=8.3%).

4.3. Impact of Model Scale

Generally, larger models can be more accurate. Our analysis
shows that even when the overall performance increases with
a larger model, there can be subgroups where it decreases.

We compare the performance of wav2vec 2.0 base (w2v2-
b) and large (w2v2-l) models. Overall, the accuracy rises
from 91.72% for the smaller model to 93.17% for the larger
one. To analyze subgroup performance, we compute the gain
as the difference in performance between the smaller and
larger models on the subgroup. Performance increases in
63.75% of the explored subgroups and decreases in 31.89%
of them. Table 2 shows subgroups on which performance in-
creases (↑), does not change significantly (=), and decreases
(↓). The largest drop in performance (-20.97%) corresponds
to male speakers, action activate, and low speaking rate.

Unequal improvement across genders. Our approach
enables the comparison of model performance on any com-
bination of metadata attributes. One such attribute is gender.
Considering gender alone, the accuracy for women rises from
92.51% to 95.39%, while for men is almost stable, with a
slight decrease (-0.11%). Consequently, the performance gap
among genders increases when going to the larger model.



Further, our analysis reveals that this difference is exac-
erbated if we consider gender intersected with other factors.
Table 3 compares the performance of the base vs. large model
separately for the two main genders. The table reports the
results for three sample itemsets. The small model performs
worse for females in the first subgroup, while the larger shows
better performance. Conversely, the larger model shows a sig-
nificant drop in performance for males in the last subgroup.

4.4. Cross-Model Divergence

In the previous results, we have compared models that are of
different sizes but share the same structure. We can use our
techniques for comparing models with different structure as
well. As an example, we can study the performance gain ob-
tained by changing the wav2vec 2.0 with the HuBERT base
(hub-b) model. Overall, hub-b has higher performance
than w2v2-b (98.42% compared to 91.72%). The second
block of Table 2 reports results for three specific subgroups.
The former is associated with the largest performance gain,
for the second the performance is unchanged, and the latter
is associated with the largest decrease. When changing from
wav2vec 2.0 to HuBERT base, 97.03% of the subgroups have
positive gain. When changing from base to large wav2vec 2.0,
only 63.75% of subgroups had positive gain. Changing archi-
tecture to HuBERT has a far more uniformly positive effect
on performance than increasing the wav2vec 2.0 model size.
Our approach enables the study of how uniform the gains are
when a model is replaced with a different one.

4.5. Attribute Role in Subgroup Behavior

Given a subgroup, it is interesting to understand the role that
each metadata attribute plays in the divergence or gain of
the subgroup. This role is captured by the notion of Shapley
value (see Section 3 and [1]). Consider the first row of Ta-
ble 3. It defines two subgroups, one for gender male, one for
gender female, and both with {action=increase, loc=none,
n words=low, trim dur=low}. Figure 1 shows the influ-
ence of each item on the gain obtained by going from
small to large models. We note that all four items ac-
tion=increase, loc=none, n words=low, and trim dur=low
contribute positively to the performance gain. In contrast,
item gender=female has a positive influence for the female
subgroup, while gender=male has negative influence for the
male subgroup. That is, the lesser performance gain for the
male subgroup is chiefly caused by the gender=male item.

Global item role in performance gain. We summarize
the impact of each item on the gain in performance when the
size is increased using the global Shapley value Sg . Intu-
itively, a positive value for Sg(i) indicates that on average,
adding i to an itemset J with i ̸∈ J leads to a performance
increase; similarly for negative values. The top 15 items with
the largest impact when changing from wav2vec 2.0 base to

0.2 0.0 0.2 0.4

trim_dur=medium
action=activate

gender=male
loc=washroom

speakRate=low
loc=kitchen

trim_dur=high
n_words=high

loc=none
object=volume

speakRate=high
dur=low

gender=female
n_words=low
trim_dur=low

Fig. 2. Global Shapley values of accuracy gain for wav2vec
2.0 base to large (solid orange), and for wav2vec 2.0 base to
HuBERT base (shaded blue).

large are reported in Figure 2 (in orange). Utterances with
low duration and a low number of words are associated with
a performance improvement, while medium duration and the
action activate are associated with a decrease. The presence
of gender among the top 3 confirms its role in model perfor-
mance: other things being equal, the gain is greater for fe-
males and smaller for males. Figure 2 reports (in blue) the
global Shapley value of the top 15 items when changing from
wav2vec 2.0 base to HuBERT. For this model change, gender
has only a small and negligible contribution to the gain.

5. CONCLUSIONS AND FUTURE WORK

We proposed a novel methodology to characterize the behav-
ior of E2E speech representation models in data subgroups.
We investigated subgroup behavior when the model’s size is
increased, and a different model is adopted. We also revealed
disparate improvement for sensitive attributes such as gender.

As the method is model- and task-agnostic, we envision
extending its adoption to multiple models and tasks.
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