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Abstract—Autonomous indoor navigation requires an elab-
orated and accurate algorithmic stack, able to guide robots
through cluttered, unstructured, and dynamic environments.
Global and local path planning, mapping, localization, and
decision making are only some of the required layers that
undergo heavy research from the scientific community to achieve
the requirements for fully functional autonomous navigation. In
the last years, Deep Reinforcement Learning (DRL) has proven
to be a competitive short-range guidance system solution for
power-efficient and low computational cost point-to-point local
planners. One of the main strengths of this approach is the
possibility to train a DRL agent in a simulated environment
that encapsulates robot dynamics and task constraints and
then deploy its learned point-to-point navigation policy in a
real setting. However, despite DRL easily integrates complex
mechanical dynamics and multimodal signals into a single model,
the effect of different sensor data on navigation performance has
not been investigated yet. In this paper, we compare two different
DRL navigation solutions that leverage LiDAR and depth camera
information, respectively. The agents are trained in the same
simulated environment and tested on a common benchmark to
highlight the strengths and criticalities of each technique.

Index Terms—Indoor Autonomous Navigation, Autonomous
Agents, Deep Reinforcement Learning

I. INTRODUCTION

Autonomous navigation is a challenging task in the research
area of robotics, which has been tackled with numerous
contributions and different approaches. Indeed, global and
local path planning [1], [2], localization and mapping [3] are
only some of the required tools that each year undergo heavy
research from the scientific community to achieve necessary
requirements for full automation. Among them, learning meth-
ods have been investigated in recent years due to the successful
spreading of Deep Learning (DL). In a Reinforcement Learn-
ing (RL) framework, an agent learns by experience through the
interaction with the environment where it is placed, avoiding
the need for a huge dataset for the training process. [4] RL

Fig. 1. Representation of a common simulated environment for training an
agent. If robot dynamics and task constraints are correctly encapsulated into
the simulation, it is possible to deploy on the real setting with minimal loss
of performance.

has shown very promising results in fields as diverse as video
games [5], energy usage optimization [6], and with Chiang
et al [7] deep reinforcement learning has been firstly used
to obtain a robust agent able to map noisy low-level 2-D
LiDAR observations to robot linear and angular velocities. The
policy obtained through a plain and fast simulation process is a
lightweight, power-efficient local motion planning system that
can be deployed at the edge on very low-cost hardware with
limited computational capabilities. Several implementations of
RL agents for autonomous robots are already available in
literature [8], [9]. However, a detailed study which aims at
comparing the behaviour and the performance of RL local
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Fig. 2. Schematic representation of the working principle of the system.

planners trained with sensor data of different nature can be a
helpful resource for robotics researchers.

In the rest of the paper, we discuss a LiDAR-based solution
and a depth camera configuration, highlighting the strengths
and weaknesses of both techniques. Nevertheless, both result-
ing systems successfully solve the complex local path planning
problem with limited computational requests and can be easily
integrated into a complete navigation stack.

II. METHODOLOGY

Deep Deterministic Policy Gradient (DDPG) [10] is the
specific Deep Reinforcement Learning (DRL) algorithm used
to train an agent in a custom virtual environment realized
in Gazebo. An Artificial Neural Network (ANN) is used to
directly select suitable actions for the robot, expressed in
terms of linear and angular velocity (ANN output). Input
information is composed of the robot’s orientation and dis-
tance from the goal, in addition to the obstacle’s distance
data collected by a LiDAR or by a depth camera. LiDAR
points are 1-D measurements of all-around distances from
obstacles. Depth images are single-channel grey-scale images
that provide distance information. A significant focus is also
devoted to minimizing the computational cost of the model,
looking forward to a future hardware implementation. The per-
formance of the navigation system when using depth images
is compared to solutions based on LiDAR points to highlight
the strength and weaknesses of the two sensor data. On the
one hand, a camera offers a piece of rich depth information in
a restricted Field of View (FOV). On the other hand, a simple
2D LiDAR is able to cover a wider angle, limiting the depth
information to a horizontal plane. The two agents are trained
in virtual environment with obstacles and tested in a different
challenging simulated world.

III. VIRTUAL ENVIRONMENT FRAMEWORK

ROSbot 2.0 Pro is the standard robotic platform used for
the work, which allows to carry out the whole development
in simulation thanks to its virtual model. Gazebo is used for
modeling virtual indoor scenes where the simulated interaction
between the robot and the environment takes place. Standard
ROS packages are used to control the robot actuators at a
high level, directly acting on the velocity. Simulations are
structured in episodes in which the robot has to reach a specific
target point. Each episode is composed of a maximum of 600
temporal steps and it terminates with three possible outcomes:
Goal, Collision or Timeout. The system working principle can

be summarized as follow (see also Figure 2). At a generic time
instant, an artificial neural network selects an action at for the
robot, i.e. a velocity command, according to the state st, and
it is executed in the virtual world. The environment samples
a score rt+1, then it processes the sensor data received, and it
sends back a new state st+1.

The neural network receives as input the following data:
• Goal information: the pose of the robot is known thanks

to the odometry data. They are processed to compute the
actual distance from the goal and the robot orientation
with respect to the goal (heading angle).

• LiDAR points: LiDAR-based navigation relies on Li-
DAR distance measurements. They are collected and
filtered from 359 to 36 all-around points, selecting the
minimum distance values for each angular range of 10◦,
to guarantee the perception of nearest obstacles.

• Depth image: for the visual-based navigation, a Orbbec
Astra camera captures raw depth images with a resolution
of 480x640, which is reduced to 60x80 to minimize the
computational resources required for training. For each
pixel a maximum cutoff distance value of 8m is accepted.

The output is a velocity command composed of a linear
velocity in the range [0, 0.6]m/s and an angular velocity in
the interval [−1.5, 1.5]rad/s.

IV. TRAINING

Reinforcement Learning enables multiple advantages to
tackle the navigation task. In fact, the agent is trained without
the need for a dataset and results in being a versatile motion
planner for mapless navigation. The Deep Deterministic Policy
Gradient is the actor-critic algorithm chosen to train the agent.
This particular architecture exploits two different neural net-
works. The actor network aims to approximate a deterministic
policy to select actions, and it is the one controlling the
robot. The critic network is responsible for evaluating the
actions chosen by the actor, by approximating the action-value
function Q(s, a).

For the LiDAR-based local planner, the actor neural network
is composed of three fully connected layers with 256 units.
Differently, the actor Convolutional Neural Network for visual-
based navigation is composed of a stack of convolutional
layers to extract features from depth images. Features are con-
catenated with the goal’s information and forwarded to fully
connected layers. In both cases, two distinct output neurons,
having a sigmoid and a tanh activation function, respectively
map the linear and angular velocity command. A vital element
of the training process with reinforcement learning is the
reward function. The reward is a numerical score assigned at
each time step to the agent to evaluate its behavior. The reward
function can be shaped with basic numerical contribution, for
example assigning +1000 when the goal is reached and −100
in case of a collision with an obstacle. More complex reward
functions have been studied with a specific focus on desired
behaviors (behavioral rewards). In this study we make use of
a behavioral reward function with the aim of let the agent
minimize the distance from the target goal while keeping
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a satisfying orientation during the navigation. Rewards have
also been modulated along the series of training episodes
to progressively learn challenging behaviors of the agent.
According to the DDPG algorithm, the reward is needed to
compute the target values and the critic’s gradients. Finally,
the actor’s gradients are computed, and the ADAM optimizer
updates the weights of the networks.

V. TEST AND RESULTS

The agent is tested in virtual environments with obstacles
of different shapes. Among them people, tables, walls and
columns have been chosen to represent a common indoor
scenario with complex obstacles. The ability of the robot
to navigate efficiently in an unknown scenario is evaluated
with some basic metrics: outcome of the testing episode, total
travel time in seconds, total path length in meters. The test
is performed by giving 15 target points to be reached in
different areas of the environment. Each of them offers a
peculiar challenge for the obstacle avoidance task. The robot
always starts from a measured point inside the scene. If it
collides with an obstacle, the test is considered failed. The
same test is carried out with both the LiDAR-based and the
depth image-based implementations. Both the agents have
shown the ability to reach target points in the presence of static
obstacles, without colliding with any entity in the chosen path.
The peculiar advantages and limitations of the local motion
planner when based on LiDAR points and depth images
emerge in the tests. A brief summary of the obtained results is
reported in table I. LiDAR-agent shows great robustness and
generalization ability, reaching all 15 goals, while the visual
agent misses 4 of them. Nonetheless, it demonstrates a faster
navigation. The following considerations can be done for a
qualitative comparison:

• Both the agents offers a collision-free navigation.
• The two agents choose different paths to avoid obstacles

and reach goals. In particular, the visual-agent often avoid
narrow passages and prefer to circumnavigate walls.

• The camera-driven agent is not always able to find a
suitable path in test world. This is due to the weaker
generalization ability of a visual approach. This critical
issue can be improved by increasing the visual random-
ization of the training scenarios. Moreover, depth cameras
data suffer the gap between simulated and real sensors.
The transfer of knowledge has to be tackled carefully,
introducing noise in the simulation to cover the gap with
real images.

• LiDAR provides a robust solution for embedding an
all around information about obstacles in the agent’s
state. Generalization is effective with the LiDAR, also
when transferring the agent to real world. However, more
complex obstacles with narrow or peculiar shape can still
represent a limit for this sensor.

• An hybrid solution camera-LiDAR may be a promising
configuration.

• More recent DRL algorithm for continuous control can
be implemented for a faster and robust convergence of
the training in simulation.

TABLE I
SUMMARY OF TEST RESULTS: VISUAL-BASED AND LIDAR BASED AGENT

ARE COMPARED ON A POINT-TO-POINT NAVIGATION CHALLENGE
COMPOSED OF 15 GOALS TO REACH. RESULTS AVERAGED OVER 3 RUNS.

Agent-Sensor Goals reached Total time [s] Total path length [m]

Depth Camera 11/15 16.02 8.00
LiDAR 15/15 19.16 8.55

VI. CONCLUSION AND FUTURE WORK

We briefly discussed how a power-efficient and low com-
putational cost point-to-point local planner learned with RL
can constitute a robust short-range guidance system solu-
tion. We introduced and compare two alternative architectural
implementations based on depth images and LiDAR points,
highlighting their strengths and weaknesses with respect to
obstacle avoidance. Perception is crucial for local planners,
and DRL agents show peculiar behaviours and abilities when
trained with different sensor data.
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