32 research outputs found

    Quasiparticle spin susceptibility in heavy-fermion superconductors : An NMR study compared with specific heat results

    Full text link
    Quasi-particle spin susceptibility (χqp\chi^{qp}) for various heavy-fermion (HF) superconductors are discussed on the basis of the experimental results of electronic specific heat (γel\gamma_{el}), NMR Knight shift (KK) and NMR relaxation rate (1/T11/T_1) within the framework of the Fermi liquid model for a Kramers doublet crystal electric field (CEF) ground state. χγqp\chi^{qp}_{\gamma} is calculated from the enhanced Sommerfeld coefficient γel\gamma_{el} and χT1qp\chi^{qp}_{T_1} from the quasi-particle Korringa relation T1T(KT1qp)2=const.T_1T(K^{qp}_{T_1})^2=const. via the relation of χT1qp=(NAμB/Ahf)KT1qp\chi^{qp}_{T_1}=(N_A\mu_B/A_{hf})K^{qp}_{T_1} where AhfA_{hf} is the hyperfine coupling constant, NAN_A the Abogadoro's number and μB\mu_B the Bohr magneton. For the even-parity (spin-singlet) superconductors CeCu2_2Si2_2, CeCoIn5_5 and UPd2_2Al3_3, the fractional decrease in the Knight shift, δKobs\delta K^{obs}, below the superconducting transition temperature (TcT_c) is due to the decrease of the spin susceptibility of heavy quasi-particle estimated consistently from χγqp\chi^{qp}_{\gamma} and χT1qp\chi^{qp}_{T_1}. This result allows us to conclude that the heavy quasi-particles form the spin-singlet Cooper pairs in CeCu2_2Si2_2, CeCoIn5_5 and UPd2_2Al3_3. On the other hand, no reduction in the Knight shift is observed in UPt3_3 and UNi2_2Al3_3, nevertheless the estimated values of χγqp\chi^{qp}_{\gamma} and χT1qp\chi^{qp}_{T_1} are large enough to be probed experimentally. The odd-parity superconductivity is therefore concluded in these compounds. The NMR result provides a convincing way to classify the HF superconductors into either even- or odd- parity paring together with the identification for the gap structure, as long as the system has Kramers degeneracy.Comment: 11 pages, 3 tables, 5 figures, RevTex4(LaTex2e

    Serum Estradiol and 20 Site-Specific Cancers in Women: Mendelian Randomization Study.

    Get PDF
    CONTEXT: The causal role of endogenous estradiol in cancers other than breast and endometrial cancer remains unclear. OBJECTIVE: This Mendelian randomization study assessed the causal associations of endogenous 17β-estradiol (E2), the most potent estrogen, with cancer risk in women. METHODS: As primary genetic instrument, we used a genetic variant in the CYP19A1 gene that is strongly associated with serum E2 levels. Summary statistics genetic data for the association of the E2 variant with breast, endometrial, and ovarian cancer were obtained from large-scale consortia. We additionally estimated the associations of the E2 variant with any and 20 site-specific cancers in 198 825 women of European descent in UK Biobank. Odds ratios (OR) of cancer per 0.01 unit increase in log-transformed serum E2 levels in pmol/L were estimated using the Wald ratio. RESULTS: Genetic predisposition to higher serum E2 levels was associated with increased risk of estrogen receptor (ER)-positive breast cancer (OR 1.02; 95% CI, 1.01-1.03; P = 2.5 × 10-3), endometrial cancer overall (OR 1.09; 95% CI, 1.06-1.11; P = 7.3 × 10-13), and endometrial cancer of the endometrioid histology subtype (OR 1.10; 95% CI, 1.07-1.13; P = 2.1 × 10-11). There were suggestive associations with breast cancer overall (OR 1.01; 95% CI, 1.00-1.02; P = 0.02), ovarian cancer of the endometrioid subtype (OR 1.05; 95% CI, 1.01-1.10; P = 0.02), and stomach cancer (OR 1.12; 95% CI, 1.00-1.26; P = 0.05), but no significant association with other cancers. CONCLUSION: This study supports a role of E2 in the development of ER-positive breast cancer and endometrioid endometrial cancer but found no strong association with other cancers in women
    corecore