181 research outputs found
Rhythmic Leptin Is Required for Weight Gain from Circadian Desynchronized Feeding in the Mouse
The neuroendocrine and metabolic effects of leptin have been extensively researched since the discovery, and the later identification, of the leptin gene mutated within the ob/ob mouse. Leptin is required for optimal health in a number of physiological systems (e.g. fertility, bone density, body weight regulation). Despite the extensive leptin literature and many observations of leptin’s cyclical pattern over the 24-hour day, few studies have specifically examined how the circadian rhythm of leptin may be essential to leptin signaling and health. Here we present data indicating that a rhythmic leptin profile (e.g. 1 peak every 24 hours) leads to excessive weight gain during desynchronized feeding whereas non-rhythmic leptin provided in a continuous manner does not lead to excessive body weight gain under similar feeding conditions. This study suggests that feeding time can interact with leptin’s endogenous rhythm to influence metabolic signals, specifically leading to excessive body weight gains during ‘wrongly’ timed feeding
Circadian Timing of Food Intake Contributes to Weight Gain
Studies of body weight regulation have focused almost entirely on caloric intake and energy expenditure. However, a number of recent studies in animals linking energy regulation and the circadian clock at the molecular, physiological, and behavioral levels raise the possibility that the timing of food intake itself may play a significant role in weight gain. The present study focused on the role of the circadian phase of food consumption in weight gain. We provide evidence that nocturnal mice fed a high‐fat diet only during the 12‐h light phase gain significantly more weight than mice fed only during the 12‐h dark phase. A better understanding of the role of the circadian system for weight gain could have important implications for developing new therapeutic strategies for combating the obesity epidemic facing the human population today
Differential regulation of mammalian Period genes and circadian rhythmicity by cryptochromes 1 and 2
Cryptochromes regulate the circadian clock in animals and plants. Humans and mice have two cryptochrome (Cry) genes. A previous study showed that mice lacking the Cry2 gene had reduced sensitivity to acute light induction of the circadian gene mPer1 in the suprachiasmatic nucleus (SCN) and had an intrinsic period 1 hr longer than normal. In this study, Cry1−/− and Cry1−/−Cry2−/− mice were generated and their circadian clocks were analyzed at behavioral and molecular levels. Behaviorally, the Cry1−/− mice had a circadian period 1 hr shorter than wild type and the Cry1−/−Cry2−/− mice were arrhythmic in constant darkness (DD). Biochemically, acute light induction of mPer1 mRNA in the SCN was blunted in Cry1−/− and abolished in Cry1−/−Cry2−/− mice. In contrast, the acute light induction of mPer2 in the SCN was intact in Cry1−/− and Cry1−/−Cry2−/− animals. Importantly, in double mutants, mPer1 expression was constitutively elevated and no rhythmicity was detected in either 12-hr light/12-hr dark or DD, whereas mPer2 expression appeared rhythmic in 12-hr light/12-hr dark, but nonrhythmic in DD with intermediate levels. These results demonstrate that Cry1 and Cry2 are required for the normal expression of circadian behavioral rhythms, as well as circadian rhythms of mPer1 and mPer2 in the SCN. The differential regulation of mPer1 and mPer2 by light in Cry double mutants reveals a surprising complexity in the role of cryptochromes in mammals
C57BL/6N Mutation in Cytoplasmic FMRP interacting protein 2 Regulates Cocaine Response
The inbred mouse C57BL/6J is the reference strain for genome sequence and for most behavioral and physiological phenotypes. However the International Knockout Mouse Consortium uses an embryonic stem cell line derived from a related C57BL/6N substrain. We found that C57BL/6N has lower acute and sensitized response to cocaine and methamphetamine. We mapped a single causative locus and identified a non-synonymous mutation of serine to phenylalanine (S968F) in Cytoplasmic FMR interacting protein 2 (Cyfip2) as the causative variant. The S968F mutation destabilizes CYFIP2 and deletion of the C57BL/6N mutant allele leads to acute and sensitized cocaine response phenotypes. We propose CYFIP2 is a key regulator of cocaine response in mammals and present a framework to utilize mouse substrains to discover novel genes and alleles regulating behavior
Interactions of polymorphisms in different clock genes associated with circadian phenotypes in humans
Several studies have shown that mutations and polymorphisms in clock genes are associated with abnormal circadian parameters in humans and also with more subtle non-pathological phenotypes like chronotypes. However, there have been conflicting results, and none of these studies analyzed the combined effects of more than one clock gene. Up to date, association studies in humans have focused on the analysis of only one clock gene per study. Since these genes encode proteins that physically interact with each other, combinations of polymorphisms in different clock genes could have a synergistic or an inhibitory effect upon circadian phenotypes. In the present study, we analyzed the combined effects of four polymorphisms in four clock genes (Per2, Per3, Clock and Bmal1) in people with extreme diurnal preferences (morning or evening). We found that a specific combination of polymorphisms in these genes is more frequent in people who have a morning preference for activity and there is a different combination in individuals with an evening preference for activity. Taken together, these results show that it is possible to detect clock gene interactions associated with human circadian phenotypes and bring an innovative idea of building a clock gene variation map that may be applied to human circadian biology
How Coupling Determines the Entrainment of Circadian Clocks
Autonomous circadian clocks drive daily rhythms in physiology and behaviour.
A network of coupled neurons, the suprachiasmatic nucleus (SCN), serves as a
robust self-sustained circadian pacemaker. Synchronization of this timer to the
environmental light-dark cycle is crucial for an organism's fitness. In a
recent theoretical and experimental study it was shown that coupling governs
the entrainment range of circadian clocks. We apply the theory of coupled
oscillators to analyse how diffusive and mean-field coupling affects the
entrainment range of interacting cells. Mean-field coupling leads to amplitude
expansion of weak oscillators and, as a result, reduces the entrainment range.
We also show that coupling determines the rigidity of the synchronized SCN
network, i.e. the relaxation rates upon perturbation. %(Floquet exponents). Our
simulations and analytical calculations using generic oscillator models help to
elucidate how coupling determines the entrainment of the SCN. Our theoretical
framework helps to interpret experimental data
PDFR and CRY Signaling Converge in a Subset of Clock Neurons to Modulate the Amplitude and Phase of Circadian Behavior in Drosophila
Background: To synchronize their molecular rhythms, circadian pacemaker neurons must input both external and internal timing cues and, therefore, signal integration between sensory information and internal clock status is fundamental to normal circadian physiology. Methodology/Principal Findings: We demonstrate the specific convergence of clock-derived neuropeptide signaling with that of a deep brain photoreceptor. We report that the neuropeptide PDF receptor and the circadian photoreceptor CRYPTOCROME (CRY) are precisely co-expressed in a subset of pacemakers, and that these pathways together provide a requisite drive for circadian control of daily locomotor rhythms. These convergent signaling pathways influence the phase of rhythm generation, but also its amplitude. In the absence of both pathways, PER rhythms were greatly reduced in only those specific pacemakers that receive convergent inputs and PER levels remained high in the nucleus throughout the day. This suggested a large-scale dis-regulation of the pacemaking machinery. Behavioral rhythms were likewise disrupted: in light:dark conditions they were aberrant, and under constant dark conditions, they were lost. Conclusions/Significance: We speculate that the convergence of environmental and clock-derived signals may produce
The Optokinetic Reflex as a Tool for Quantitative Analyses of Nervous System Function in Mice: Application to Genetic and Drug-Induced Variation
The optokinetic reflex (OKR), which serves to stabilize a moving image on the retina, is a behavioral response that has many favorable attributes as a test of CNS function. The OKR requires no training, assesses the function of diverse CNS circuits, can be induced repeatedly with minimal fatigue or adaptation, and produces an electronic record that is readily and objectively quantifiable
Circadian Modulation of Gene Expression, but not Glutamate Uptake, in Mouse and Rat Cortical Astrocytes
Circadian clocks control daily rhythms including sleep-wake, hormone secretion, and metabolism. These clocks are based on intracellular transcription-translation feedback loops that sustain daily oscillations of gene expression in many cell types. Mammalian astrocytes display circadian rhythms in the expression of the clock genes Period1 (Per1) and Period2 (Per2). However, a functional role for circadian oscillations in astrocytes is unknown. Because uptake of extrasynaptic glutamate depends on the presence of Per2 in astrocytes, we asked whether glutamate uptake by glia is circadian.We measured glutamate uptake, transcript and protein levels of the astrocyte-specific glutamate transporter, Glast, and the expression of Per1 and Per2 from cultured cortical astrocytes and from explants of somatosensory cortex. We found that glutamate uptake and Glast mRNA and protein expression were significantly reduced in Clock/Clock, Per2- or NPAS2-deficient glia. Uptake was augmented when the medium was supplemented with dibutyryl-cAMP or B27. Critically, glutamate uptake was not circadian in cortical astrocytes cultured from rats or mice or in cortical slices from mice.We conclude that glutamate uptake levels are modulated by CLOCK, PER2, NPAS2, and the composition of the culture medium, and that uptake does not show circadian variations
- …