243 research outputs found
Draft Genome Sequences of Four NDM-1-Producing Klebsiella pneumoniae Strains from a Health Care Facility in Northern California.
We report the draft genome sequences of Klebsiella pneumoniae strains from four patients at a northern California health care facility. All strains contained the New Delhi metallo-β-lactamase (NDM1) carbapenemase with extended antibiotic resistance, including resistance to expanded-spectrum cephalosporins, imipenem, ertapenem, and meropenem. NDM gene alignments revealed that the resistance was plasmid encoded
Mycobiome of the Bat White Nose Syndrome (WNS) Affected Caves and Mines reveals High Diversity of Fungi and Local Adaptation by the Fungal Pathogen Pseudogymnoascus (Geomyces) destructans
The investigations of the bat White Nose Syndrome (WNS) have yet to provide
answers as to how the causative fungus Pseudogymnoascus (Geomyces) destructans
(Pd) first appeared in the Northeast and how a single clone has spread rapidly
in the US and Canada. We aimed to catalogue Pd and all other fungi (mycobiome)
by the culture-dependent (CD) and culture-independent (CI) methods in four
Mines and two Caves from the epicenter of WNS zoonotic. Six hundred sixty-five
fungal isolates were obtained by CD method including the live recovery of Pd.
Seven hundred three nucleotide sequences that met the definition of operational
taxonomic units (OTUs) were recovered by CI methods. Most OTUs belonged to
unidentified clones deposited in the databases as environmental nucleic acid
sequences (ENAS). The core mycobiome of WNS affected sites comprised of 46
species of fungi from 31 genera recovered in culture, and 17 fungal genera and
31 ENAS identified from clone libraries. Fungi such as Arthroderma spp.,
Geomyces spp., Kernia spp., Mortierella spp., Penicillium spp., and
Verticillium spp. were predominant in culture while Ganoderma spp., Geomyces
spp., Mortierella spp., Penicillium spp. and Trichosporon spp. were abundant is
clone libraries. Alpha diversity analyses from CI data revealed that fungal
community structure was highly diverse. However, the true species diversity
remains undetermined due to under sampling. The frequent recovery of Pd
indicated that the pathogen has adapted to WNS-afflicted habitats. Further,
this study supports the hypothesis that Pd is an introduced species. These
findings underscore the need for integrated WNS control measures that target
both bats and the fungal pathogen.Comment: 59 pages, 7figure
Clonal Genotype of Geomyces destructans among Bats with White Nose Syndrome, New York, USA
The dispersal mechanism of Geomyces destructans, which causes
geomycosis (white nose syndrome) in hibernating bats, remains unknown. Multiple
gene genealogic analyses were conducted on 16 fungal isolates from diverse sites
in New York State during 2008–2010. The results are consistent with the
clonal dispersal of a single G. destructans genotype
A Diverse Population of Cryptococcus gattii Molecular Type VGIII in Southern Californian HIV/AIDS Patients
Cryptococcus gattii infections in southern California have been reported in patients with HIV/AIDS. In this study, we examined the molecular epidemiology, population structure, and virulence attributes of isolates collected from HIV/AIDS patients in Los Angeles County, California. We show that these isolates consist almost exclusively of VGIII molecular type, in contrast to the VGII molecular type isolates causing the North American Pacific Northwest outbreak. The global VGIII population structure can be divided into two molecular groups, VGIIIa and VGIIIb. Isolates from the Californian patients are virulent in murine and macrophage models of infection, with VGIIIa significantly more virulent than VGIIIb. Several VGIII isolates are highly fertile and produce abundant sexual spores that may serve as infectious propagules. The a and α VGIII MAT locus alleles are largely syntenic with limited rearrangements compared to the known VGI (a/α) and VGII (α) MAT loci, but each has unique characteristics including a distinct deletion flanking the 5′ VGIII MATa alleles and the α allele is more heterogeneous than the a allele. Our studies indicate that C. gattii VGIII is endemic in southern California, with other isolates originating from the neighboring regions of Mexico, and in rarer cases from Oregon and Washington state. Given that >1,000,000 cases of cryptococcal infection and >620,000 attributable mortalities occur annually in the context of the global AIDS pandemic, our findings suggest a significant burden of C. gattii may be unrecognized, with potential prognostic and therapeutic implications. These results signify the need to classify pathogenic Cryptococcus cases and highlight possible host differences among the C. gattii molecular types influencing infection of immunocompetent (VGI/VGII) vs. immunocompromised (VGIII/VGIV) hosts
Molecular characterization, biofilm analysis and experimental biofouling study of Fusarium isolates from recent cases of fungal keratitis in New York State
BACKGROUND: To characterize Fusarium isolates from recent cases of fungal keratitis in contact lens wearers, and to investigate fungal association with MoistureLoc solution. METHODS: We studied six fungal isolates from recent cases of keratitis in New York State. The isolates were characterized by nucleotide sequencing and phylogenetic analyses of multiple genes, and then typed using minisatellite and microsatellite probes. Experimental fungal biofilm formation was tested by standard methods. MoistureLoc solutions were tested in biofouling studies for their efficacy in elimination of Fusarium contamination. RESULTS: Fusarium solani – corneal ulcers (2 isolates), lens case (1 isolate), and F. oxysporum – corneal ulcer (1 isolate), eye (1 isolate), were recovered from five patients. An opened bottle of MoistureLoc solution provided by a patient also yielded F. solani. Two distinct genotypes of F. solani as well as of F. oxysporum were present in the isolated strains. Remarkably, F. solani strains from the lens case and lens solution in one instance were similar, based on phylogenetic analyses and molecular typing. The solution isolate of F. solani formed biofilm on contact lenses in control conditions, but not when co-incubated with MoistureLoc solution. Both freshly opened and 3-month old MoistureLoc solutions effectively killed F. solani and F. oxysporum, when fungal contamination was simulated under recommended lens treatment regimen (4-hr). However, simulation of inappropriate use (15 – 60 min) led to the recovery of less than 1% of original inoculum of F. solani or F. oxysporum. CONCLUSION: Temporary survival of F. solani and F. oxysporum in MoistureLoc suggested that improper lens cleaning regimen could be a possible contributing factor in recent infections
Specific Alterations in Complement Protein Activity of Little Brown Myotis (Myotis lucifugus) Hibernating in White-Nose Syndrome Affected Sites
White-nose syndrome (WNS) is the most devastating condition ever reported for hibernating bats, causing widespread mortality in the northeastern United States. The syndrome is characterized by cutaneous lesions caused by a recently identified psychrophilic and keratinophylic fungus (Geomyces destructans), depleted fat reserves, atypical behavior, and damage to wings; however, the proximate cause of mortality is still uncertain. To assess relative levels of immunocompetence in bats hibernating in WNS-affected sites compared with levels in unaffected bats, we describe blood plasma complement protein activity in hibernating little brown myotis (Myotis lucifugus) based on microbicidal competence assays using Escherichia coli, Staphylococcus aureus and Candida albicans. Blood plasma from bats collected during mid-hibernation at WNS-affected sites had higher bactericidal ability against E. coli and S. aureus, but lower fungicidal ability against C. albicans when compared with blood plasma from bats collected at unaffected sites. Within affected sites during mid-hibernation, we observed no difference in microbicidal ability between bats displaying obvious fungal infections compared to those without. Bactericidal ability against E. coli decreased significantly as hibernation progressed in bats collected from an affected site. Bactericidal ability against E. coli and fungicidal ability against C. albicans were positively correlated with body mass index (BMI) during late hibernation. We also compared complement activity against the three microbes within individuals and found that the ability of blood plasma from hibernating M. lucifugus to lyse microbial cells differed as follows: E. coli>S. aureus>C. albicans. Overall, bats affected by WNS experience both relatively elevated and reduced innate immune responses depending on the microbe tested, although the cause of observed immunological changes remains unknown. Additionally, considerable trade-offs may exist between energy conservation and immunological responses. Relationships between immune activity and torpor, including associated energy expenditure, are likely critical components in the development of WNS
Cryptococcus gattii in AIDS Patients, Southern California
A molecular analysis of pheromone genes showed a notable prevalence of Cryptococcus gattii isolates from AIDS patients in southern California
Multicenter Collaborative Study of the Interaction of Antifungal Combinations against BrowZine Journal Cover Candida Spp. by Loewe Additivity and Bliss Independence-Based Response Surface Analysis
Combination antifungal therapy is widely used but not well understood. We analyzed the spectrophotometric readings from a multicenter study conducted by the New York State Department of Health to further characterize the in vitro interactions of the major classes of antifungal agents against Candida spp. Loewe additivity-based fractional inhibitory concentration index (FICi) analysis and Bliss independence-based response surface (BIRS) analysis were used to analyze two-drug inter- and intraclass combinations of triazoles (AZO) (voriconazole, posaconazole), echinocandins (ECH) (caspofungin, micafungin, anidulafungin), and a polyene (amphotericin B) against Candida albicans, C. parapsilosis, and C. glabrata. Although mean FIC indices did not differ statistically significantly from the additivity range of 0.5−4, indicating no significant pharmacodynamic interactions for all of the strain−combinations tested, BIRS analysis showed that significant pharmacodynamic interactions with the sum of percentages of interactions determined with this analysis were strongly associated with the FIC indices (Χ2 646, p \u3c 0.0001). Using a narrower additivity range of 1−2 FIC index analysis, statistically significant pharmacodynamic interactions were also found with FICi and were in agreement with those found with BIRS analysis. All ECH+AB combinations were found to be synergistic against all Candida strains except C. glabrata. For the AZO+AB combinations, synergy was found mostly with the POS+AB combination. All AZO+ECH combinations except POS+CAS were synergistic against all Candida strains although with variable magnitude; significant antagonism was found for the POS+MIF combination against C. albicans. The AZO+AZO combination was additive for all strains except for a C. parapsilosis strain for which antagonism was also observed. The ECH+ECH combinations were synergistic for all Candida strains except C. glabrata for which they were additive; no antagonism was found
Morphological and Molecular Characterizations of Psychrophilic Fungus Geomyces destructans from New York Bats with White Nose Syndrome (WNS)
Background: Massive die-offs of little brown bats (Myotis lucifugus) have been occurring since 2006 in hibernation site
Gene effect analysis of forage quality traits in barley (Hordeum vulgare) in Bundelkhand region of India
Present study was carried out during winter (rabi) seasons of 2019–20 and 2020–21 at Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh to decipher underlying gene effects for green forage quality characters in barley (Hordeum vulgare L.) in Bundelkhand region of Uttar Pradesh. Eight diverse barley genotypes, viz. BH902, BH946, DWRB160, DWRB180, RD2552, RD2794, RD2899 and RD2907 were evaluated and crossed in half diallel design. A total of 28 F1s along with 8 parents were sown in randomized complete block design (RCBD) with 3 replications. The green fodder was harvested after 55 days of sowing (DAS) and fodder quality analysis was conducted. The crude protein (CP) and nitrogen (N) contents showed mean values of 14.19 and 2.49% ranged from 12.62–15.26% and 2.22–2.68%, respectively. The characters, viz. organic matter (OM), CP, N, lignin (L) and hemicellulose (HCL) showed prepondrance of additive gene effects, whereas acid detergent fibre (ADF), neutral detergent fibre (NDF) and cellulose (CL) showed the prevalnce of dominance gene effects. The genotype DWRB180 and two rowed malt barley variety DWRB160 were estimated with desirable additive gene effects for forage intake and digestibility traits. The cross combinations, DWRB160/RD2899, BH946/RD2552 and RD2794/DWRB180 can be further utilized for CP and N contents, whereas, the progenies, viz. BH946/DWRB180 and RD2552/RD2907 were promising for ADF and NDF. GT biplot corroborated positive correlations of NDF with ADF (0.43**), HCL (0.88**) and CL (0.41*). The improvement in forage intake and digestibility characters like ADF, NDF and CL is suggested through complex crossing followed by selection
- …