69 research outputs found

    Molecular pathways driving omeprazole nephrotoxicity

    Full text link
    Omeprazole, a proton pump inhibitor used to treat peptic ulcer and gastroesophageal reflux disease, has been associated to chronic kidney disease and acute interstitial nephritis. However, whether omeprazole is toxic to renal cells is unknown. Omeprazole has a lethal effect over some cancer cells, and cell death is a key process in kidney disease. Thus, we evaluated the potential lethal effect of omeprazole over tubular cells. Omeprazole induced dose-dependent cell death in human and murine proximal tubular cell lines and in human primary proximal tubular cell cultures. Increased cell death was observed at the high concentrations used in cancer cell studies and also at lower concentrations similar to those in peptic ulcer patient serum. Cell death induced by omeprazole had features of necrosis such as annexin V/7-AAD staining, LDH release, vacuolization and irregular chromatin condensation. Weak activation of caspase-3 was observed but inhibitors of caspases (zVAD), necroptosis (Necrostatin-1) or ferroptosis (Ferrostatin-1) did not prevent omeprazole-induced death. However, omeprazole promoted a strong oxidative stress response affecting mitochondria and lysosomes and the antioxidant N-acetyl-cysteine reduced oxidative stress and cell death. By contrast, iron overload increased cell death. An adaptive increase in the antiapoptotic protein BclxL failed to protect cells. In mice, parenteral omeprazole increased tubular cell death and the expression of NGAL and HO-1, markers of renal injury and oxidative stress, respectively. In conclusion, omeprazole nephrotoxicity may be related to induction of oxidative stress and renal tubular cell deathSupported by FIS CP12/03262, CP14/00133, PI16/02057, PI16/ 01900, PI18/01366, PI19/00588, PI19/00815, DTS18/00032, ERAPerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071, ISCIII-RETIC REDinREN RD016/0009 FEDER funds, Sociedad Española de Nefrología, Fundacion Renal Iñigo Álvarez de Toledo (FRIAT), ISCIII Miguel Servet (ABS, MDS-N), ISCIII Sara Borrell (JMM-M), Comunidad de Madrid CIFRA2 B2017/BMD-3686 (MF-B and DM-S

    African Mitochondrial DNA Haplogroup L2 Is Associated with Slower Decline of β-cell Function and Lower Incidence of Diabetes Mellitus in Non-Hispanic, Black Women Living with Human Immunodeficiency Virus

    Get PDF
    Background: Susceptibility to metabolic diseases may be influenced by mitochondrial genetic variability among people living with human immunodeficiency virus (HIV; PLWH), but remains unexplored in populations with African ancestry. We investigated the association between mitochondrial DNA (mtDNA) haplogroups and the homeostatic model assessments of β-cell function (HOMA-B) and insulin resistance (HOMA-IR), as well as incident diabetes mellitus (DM), among Black women living with or at risk for HIV. Methods: Women without DM who had fasting glucose (FG) and insulin (FI) data for ≥2 visits were included. Haplogroups were inferred from genotyping data using HaploGrep. HOMA-B and HOMA-IR were calculated using FG and FI data. Incident DM was defined by a combination of FG ≥ 126 mg/dL, the use of DM medication, a DM diagnosis, or hemoglobin A1c ≥ 6.5%. We compared HOMA-B, HOMA-IR, and incident DM by haplogroups and assessed the associations between HOMA-B and HOMA-IR and DM by haplogroup. Results: Of 1288 women (933 living with HIV and 355 living without HIV), PLWH had higher initial HOMA-B and HOMA-IR than people living without HIV. PLWH with haplogroup L2 had a slower decline in HOMA-B per year (Pinteraction =. 02) and a lower risk of incident DM (hazard ratio [HR], 0.51; 95% confidence interval [CI],. 32-.82) than PLWH with other haplogroups after adjustments for age, body mass index, combination antiretroviral therapy use, CD4 cell counts, and HIV RNA. The impact of HOMA-IR on incident DM was less significant in those with haplogroup L2, compared to non-L2 (HR, 1.28 [95% CI,. 70-2.38] vs 4.13 [95% CI, 3.28-5.22], respectively; Pinteraction <. 01), among PLWH. Conclusions: Mitochondrial genetic variation is associated with β-cell functions and incident DM in non-Hispanic, Black women with HIV and alters the relationship between insulin resistance and DM

    Genetic basis for variation in plasma IL-18 levels in persons with chronic hepatitis C virus and human immunodeficiency virus-1 infections

    Get PDF
    Inflammasomes are multi-protein complexes integrating pathogen-triggered signaling leading to the generation of pro-inflammatory cytokines including interleukin-18 (IL-18). Hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections are associated with elevated IL-18, suggesting inflammasome activation. However, there is marked person-to-person variation in the inflammasome response to HCV and HIV. We hypothesized that host genetics may explain this variation. To test this, we analyzed the associations of plasma IL-18 levels and polymorphisms in 10 genes in the inflammasome cascade. About 1538 participants with active HIV and/or HCV infection in three ancestry groups are included. Samples were genotyped using the Illumina Omni 1-quad and Omni 2.5 arrays. Linear regression analyses were performed to test the association of variants with log IL-18 including HCV and HIV infection status, and HIV RNA in each ancestry group and then meta-analyzed. Eleven highly correlated single-nucleotide polymorphisms (r²=0.98–1) in the IL-18-BCO2 region were significantly associated with log IL-18; each T allele of rs80011693 confers a decrease of 0.06 log pg ml⁻¹ of IL-18 after adjusting for covariates (rs80011693; rs111311302 β=−0.06, P-value=2.7 × 10⁻⁴). In conclusion, genetic variation in IL-18 is associated with IL-18 production in response to HIV and HCV infection, and may explain variability in the inflammatory outcomes of chronic viral infections

    Elevated 17β-Estradiol Protects Females from Influenza A Virus Pathogenesis by Suppressing Inflammatory Responses

    Get PDF
    Studies of the 1918 H1N1 influenza pandemic, the H5N1 avian influenza outbreak, and the 2009 H1N1 pandemic illustrate that sex and pregnancy contribute to severe outcome from infection, suggesting a role for sex steroids. To test the hypothesis that the sexes respond differently to influenza, the pathogenesis of influenza A virus infection was investigated in adult male and female C57BL/6 mice. Influenza infection reduced reproductive function in females and resulted in greater body mass loss, hypothermia, and mortality in females than males. Whereas lung virus titers were similar between the sexes, females had higher induction of proinflammatory cytokines and chemokines, including TNF-α, IFN-γ, IL-6, and CCL2, in their lungs than males. Removal of the gonads in both sexes eliminated the sex difference in influenza pathogenesis. Manipulation of testosterone or dihydrotestosterone concentrations in males did not significantly impact virus pathogenesis. Conversely, females administered high doses of estradiol had a ≥10-fold lower induction of TNF-α and CCL2 in the lungs and increased rates of survival as compared with females that had either low or no estradiol. The protective effects of estradiol on proinflammatory cytokines and chemokines, morbidity, and mortality were primarily mediated by signaling through estrogen receptor α (ERα). In summary, females suffer a worse outcome from influenza A virus infection than males, which can be reversed by administration of high doses of estradiol to females and reflects differences in the induction of proinflammatory responses and not in virus load

    Cyclic AMP signalling pathways in the regulation of uterine relaxation

    Get PDF
    Studying the mechanism(s) of uterine relaxation is important and will be helpful in the prevention of obstetric difficulties such as preterm labour, which remains a major cause of perinatal mortality and morbidity. Multiple signalling pathways regulate the balance between maintaining relative uterine quiescence during gestation, and the transition to the contractile state at the onset of parturition. Elevation of intracellular cyclic AMP promotes myometrial relaxation, and thus quiescence, via effects on multiple intracellular targets including calcium channels, potassium channels and myosin light chain kinase. A complete understanding of cAMP regulatory pathways (synthesis and hydrolysis) would assist in the development of better tocolytics to delay or inhibit preterm labour. Here we review the enzymes involved in cAMP homoeostasis (adenylyl cyclases and phosphodiesterases) and possible myometrial substrates for the cAMP dependent protein kinase. We must emphasise the need to identify novel pharmacological targets in human pregnant myometrium to achieve safe and selective uterine relaxation when this is indicated in preterm labour or other obstetric complications

    Research, science and technology parks: A global comparison of best practices

    Get PDF
    The purpose of this study was to determine if significant differences exist in the evaluation of effectiveness and efficiency between North American, European, and Asian research parks (RPs). Park directors and staff responded to 25 questions from the Survey for Research, Science and Technology Parks. Effectiveness was measured by director\u27s perception of the RP\u27s contribution to economic growth and job creation. Efficiency was evaluated by the interactions between local universities and research parks, assessment of the ecosystem\u27s basic characteristics, and the culture of innovation in the ecosystem. A stratified sampling procedure from a population of 793 parks was used; analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA) were used to test for significance. 130 RPs from three continents participated in this study. No significant differences were found in the evaluation of RPs\u27 directors on effectiveness and efficiency of RPs

    Capacidades tecnicas y desafios del manejo forestal comunitario

    No full text

    Effect of thermal liquefaction on quality, chemical composition and antibiofilm activity against multiresistant human pathogens of crystallized eucalyptus honey

    No full text
    Thermal liquefaction is a conventional method used by beekeepers to liquefy crystallized honey. However, an abusive use of heat may affect its quality, chemical composition and bioactivity. The purpose of this study was to investigate the effect of thermal liquefaction on the quality, chemical composition and antibiofilm properties of eucalyptus honey. Thermal liquefaction (at 45 and 60 °C) did not affect the honey's quality; however, a significant reduction in the reducing capacity, total phenolic content and hydrogen peroxide content was observed. At 60 °C, a significant reduction in the honey's ability to inhibit biofilm formation was observed in Pseudomonas aeruginosa, as well as a reduction in its ability to remove preformed biofilms in both Staphylococcus aureus and Pseudomonas aeruginosa. Structural changes in biofilm architecture caused by honey were not affected by thermal treatment. Therefore, we recommend liquefaction at 45 °C as the most convenient for honey liquefaction without affecting its characteristics
    corecore