46 research outputs found

    Hierarchical Policy Learning for Mechanical Search

    Get PDF
    Retrieving objects from clutters is a complex task, which requires multiple interactions with the environment until the target object can be extracted. These interactions involve executing action primitives like grasping or pushing as well as setting priorities for the objects to manipulate and the actions to execute. Mechanical Search (MS) is a framework for object retrieval, which uses a heuristic algorithm for pushing and rule-based algorithms for high-level planning. While rule-based policies profit from human intuition in how they work, they usually perform sub-optimally in many cases. Deep reinforcement learning (RL) has shown great performance in complex tasks such as taking decisions through evaluating pixels, which makes it suitable for training policies in the context of object-retrieval. In this work, we first formulate the MS problem in a principled formulation as a hierarchical POMDP. Based on this formulation, we propose a hierarchical policy learning approach for the MS problem. For demonstration, we present two main parameterized sub-policies: a push policy and an action selection policy. When integrated into the hierarchical POMDP's policy, our proposed sub-policies increase the success rate of retrieving the target object from less than 32% to nearly 80%, while reducing the computation time for push actions from multiple seconds to less than 10 milliseconds.Comment: ICRA 202

    A Covariance Matrix Adaptation Evolution Strategy for Direct Policy Search in Reproducing Kernel Hilbert Space

    Get PDF
    The covariance matrix adaptation evolution strategy (CMA-ES) is an efficient derivative-free optimization algorithm. It optimizes a black-box objective function over a well defined parameter space. In some problems, such parameter spaces are defined using function approximation in which feature functions are manually defined. Therefore, the performance of those techniques strongly depends on the quality of chosen features. Hence, enabling CMA-ES to optimize on a more complex and general function class of the objective has long been desired. Specifically, we consider modeling the input space for black-box optimization in reproducing kernel Hilbert spaces (RKHS). This modeling leads to a functional optimization problem whose domain is a function space that enables us to optimize in a very rich function class. In addition, we propose CMA-ES-RKHS, a generalized CMA-ES framework, that performs black-box functional optimization in the RKHS. A search distribution, represented as a Gaussian process, is adapted by updating both its mean function and covariance operator. Adaptive representation of the function and covariance operator is achieved with sparsification techniques. We evaluate CMA-ES-RKHS on a simple functional optimization problem and bench-mark reinforcement learning (RL) domains. For an application in RL, we model policies for MDPs in RKHS and transform a cumulative return objective as a functional of RKHS policies, which can be optimized via CMA-ES-RKHS. This formulation results in a black-box functional policy search framework

    DMFC-GraspNet: Differentiable Multi-Fingered Robotic Grasp Generation in Cluttered Scenes

    Full text link
    Robotic grasping is a fundamental skill required for object manipulation in robotics. Multi-fingered robotic hands, which mimic the structure of the human hand, can potentially perform complex object manipulation. Nevertheless, current techniques for multi-fingered robotic grasping frequently predict only a single grasp for each inference time, limiting computational efficiency and their versatility, i.e. unimodal grasp distribution. This paper proposes a differentiable multi-fingered grasp generation network (DMFC-GraspNet) with three main contributions to address this challenge. Firstly, a novel neural grasp planner is proposed, which predicts a new grasp representation to enable versatile and dense grasp predictions. Secondly, a scene creation and label mapping method is developed for dense labeling of multi-fingered robotic hands, which allows a dense association of ground truth grasps. Thirdly, we propose to train DMFC-GraspNet end-to-end using using a forward-backward automatic differentiation approach with both a supervised loss and a differentiable collision loss and a generalized Q 1 grasp metric loss. The proposed approach is evaluated using the Shadow Dexterous Hand on Mujoco simulation and ablated by different choices of loss functions. The results demonstrate the effectiveness of the proposed approach in predicting versatile and dense grasps, and in advancing the field of multi-fingered robotic grasping.Comment: Submitted IROS 2023 workshop "Policy Learning in Geometric Spaces

    SA6D: Self-Adaptive Few-Shot 6D Pose Estimator for Novel and Occluded Objects

    Full text link
    To enable meaningful robotic manipulation of objects in the real-world, 6D pose estimation is one of the critical aspects. Most existing approaches have difficulties to extend predictions to scenarios where novel object instances are continuously introduced, especially with heavy occlusions. In this work, we propose a few-shot pose estimation (FSPE) approach called SA6D, which uses a self-adaptive segmentation module to identify the novel target object and construct a point cloud model of the target object using only a small number of cluttered reference images. Unlike existing methods, SA6D does not require object-centric reference images or any additional object information, making it a more generalizable and scalable solution across categories. We evaluate SA6D on real-world tabletop object datasets and demonstrate that SA6D outperforms existing FSPE methods, particularly in cluttered scenes with occlusions, while requiring fewer reference images

    FusionVAE: A Deep Hierarchical Variational Autoencoder for RGB Image Fusion

    Full text link
    Sensor fusion can significantly improve the performance of many computer vision tasks. However, traditional fusion approaches are either not data-driven and cannot exploit prior knowledge nor find regularities in a given dataset or they are restricted to a single application. We overcome this shortcoming by presenting a novel deep hierarchical variational autoencoder called FusionVAE that can serve as a basis for many fusion tasks. Our approach is able to generate diverse image samples that are conditioned on multiple noisy, occluded, or only partially visible input images. We derive and optimize a variational lower bound for the conditional log-likelihood of FusionVAE. In order to assess the fusion capabilities of our model thoroughly, we created three novel datasets for image fusion based on popular computer vision datasets. In our experiments, we show that FusionVAE learns a representation of aggregated information that is relevant to fusion tasks. The results demonstrate that our approach outperforms traditional methods significantly. Furthermore, we present the advantages and disadvantages of different design choices.Comment: Accepted at ECCV 202

    Deep Energy Autoencoder for Noncoherent Multicarrier MU-SIMO Systems

    Get PDF
    We propose a novel deep energy autoencoder (EA) for noncoherent multicarrier multiuser single-input multipleoutput (MU-SIMO) systems under fading channels. In particular, a single-user noncoherent EA-based (NC-EA) system, based on the multicarrier SIMO framework, is first proposed, where both the transmitter and receiver are represented by deep neural networks (DNNs), known as the encoder and decoder of an EA. Unlike existing systems, the decoder of the NC-EA is fed only with the energy combined from all receive antennas, while its encoder outputs a real-valued vector whose elements stand for the subcarrier power levels. Using the NC-EA, we then develop two novel DNN structures for both uplink and downlink NC-EA multiple access (NC-EAMA) schemes, based on the multicarrier MUSIMO framework. Note that NC-EAMA allows multiple users to share the same sub-carriers, thus enables to achieve higher performance gains than noncoherent orthogonal counterparts. By properly training, the proposed NC-EA and NC-EAMA can efficiently recover the transmitted data without any channel state information estimation. Simulation results clearly show the superiority of our schemes in terms of reliability, flexibility and complexity over baseline schemes.Comment: Accepted, IEEE TW

    Multi-Arm Bin-Picking in Real-Time: A Combined Task and Motion Planning Approach

    Full text link
    Automated bin-picking is a prerequisite for fully automated manufacturing and warehouses. To successfully pick an item from an unstructured bin the robot needs to first detect possible grasps for the objects, decide on the object to remove and consequently plan and execute a feasible trajectory to retrieve the chosen object. Over the last years significant progress has been made towards solving these problems. However, when multiple robot arms are cooperating the decision and planning problems become exponentially harder. We propose an integrated multi-arm bin-picking pipeline (IMAPIP), and demonstrate that it is able to reliably pick objects from a bin in real-time using multiple robot arms. IMAPIP solves the multi-arm bin-picking task first at high-level using a geometry-aware policy integrated in a combined task and motion planning framework. We then plan motions consistent with this policy using the BIT* algorithm on the motion planning level. We show that this integrated solution enables robot arm cooperation. In our experiments, we show the proposed geometry-aware policy outperforms a baseline by increasing bin-picking time by 28\% using two robot arms. The policy is robust to changes in the position of the bin and number of objects. We also show that IMAPIP to successfully scale up to four robot arms working in close proximity.Comment: 8 page

    What Matters for Meta-Learning Vision Regression Tasks?

    Get PDF
    Meta-learning is widely used in few-shot classification and function regression due to its ability to quickly adapt to unseen tasks. However, it has not yet been well explored on regression tasks with high dimensional inputs such as images. This paper makes two main contributions that help understand this barely explored area. \emph{First}, we design two new types of cross-category level vision regression tasks, namely object discovery and pose estimation of unprecedented complexity in the meta-learning domain for computer vision. To this end, we (i) exhaustively evaluate common meta-learning techniques on these tasks, and (ii) quantitatively analyze the effect of various deep learning techniques commonly used in recent meta-learning algorithms in order to strengthen the generalization capability: data augmentation, domain randomization, task augmentation and meta-regularization. Finally, we (iii) provide some insights and practical recommendations for training meta-learning algorithms on vision regression tasks. \emph{Second}, we propose the addition of functional contrastive learning (FCL) over the task representations in Conditional Neural Processes (CNPs) and train in an end-to-end fashion. The experimental results show that the results of prior work are misleading as a consequence of a poor choice of the loss function as well as too small meta-training sets. Specifically, we find that CNPs outperform MAML on most tasks without fine-tuning. Furthermore, we observe that naive task augmentation without a tailored design results in underfitting.Comment: Accepted at CVPR 202
    corecore