
A Covariance Matrix Adaptation Evolution Strategy for Direct Policy
Search in Reproducing Kernel Hilbert Space

Vien, N. A., Dang, V-H., & Chung, T. (2017). A Covariance Matrix Adaptation Evolution Strategy for Direct Policy
Search in Reproducing Kernel Hilbert Space. In The 9th Asian Conference on Machine Learning: ACML (Vol.
77, pp. 606-621). (Proceedings of Machine Learning Research).

Published in:
The 9th Asian Conference on Machine Learning

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 The Authors.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:09. Sep. 2018

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queen's University Research Portal

https://core.ac.uk/display/96665187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.qub.ac.uk/portal/en/publications/a-covariance-matrix-adaptation-evolution-strategy-for-direct-policy-search-in-reproducing-kernel-hilbert-space(54bfc81d-e317-4248-a117-e00c2aba29a0).html

JMLR: Workshop and Conference Proceedings 80:1–16, 2017 ACML 2017

A Covariance Matrix Adaptation Evolution Strategy for
Direct Policy Search in Reproducing Kernel Hilbert Space

Ngo Anh Vien v.ngo@qub.ac.uk
EEECS, Queen’s University Belfast, United Kingdom

Viet-Hung Dang dangviethungha@gmail.com
Research and Development Center, Duy Tan University, Vietnam

TaeChoong Chung tcchung@khu.ac.kr

Department of Computer Engineering, Kyung Hee University, Korea

Editors: Yung-Kyun Noh and Min-Ling Zhang

Abstract

The covariance matrix adaptation evolution strategy (CMA-ES) is an efficient derivative-
free optimization algorithm. It optimizes a black-box objective function over a well defined
parameter space. In some problems, such parameter spaces are defined using function ap-
proximation in which feature functions are manually defined. Therefore, the performance
of those techniques strongly depends on the quality of chosen features. Hence, enabling
CMA-ES to optimize on a more complex and general function class of the objective has
long been desired. Specifically, we consider modeling the input space for black-box opti-
mization in reproducing kernel Hilbert spaces (RKHS). This modeling leads to a functional
optimization problem whose domain is a function space that enables us to optimize in a
very rich function class. In addition, we propose CMA-ES-RKHS, a generalized CMA-ES
framework, that performs black-box functional optimization in RKHS. A search distribu-
tion, represented as a Gaussian process, is adapted by updating both its mean function
and covariance operator. Adaptive representation of the mean function and the covariance
operator is achieved by resorting to sparsification. CMA-ES-RKHS is evaluated on two
simple functional optimization problems and two bench-mark reinforcement learning (RL)
domains. For an application in RL, we model policies for MDPs in RKHS and transform a
cumulative return objective as a functional of RKHS policies, which can be optimized via
CMA-ES-RKHS. This formulation results in a black-box functional policy search frame-
work.

Keywords: CMA-ES, functional optimization, policy search, kernel methods, RKHS

1. Introduction

The covariance matrix adaptation evolutionary strategy (CMA-ES) is a derivative-free
method (Hansen et al., 2003) that is a practical optimizer for continuous optimization
problems. It is a general optimization framework that possesses many appealing charac-
teristics, e.g. derivative-free, covariant, off-the-shelf, scalable etc.. It is especially useful on
problems that are non-convex, non-separable, ill-conditioned, multi-modal, and with noisy
evaluations. CMA-ES belongs to Evolution Strategy (ES), hence it also works by operating
major steps: recombination, mutation and selection. In the context of robotics, CMA-ES
has been widely used in many tasks: biped locomotion (Wang et al., 2012), whole-body lo-
comotion optimization (Ha and Liu, 2014, 2016), swimming (Tan et al., 2011), skill learning

c© 2017 N.A. Vien, V.-H. Dang & T. Chung.

Vien Dang Chung

via reinforcement learning (Heidrich-Meisner and Igel, 2009a,b; Stulp and Sigaud, 2012),
inverse reinforcement learning (Rückert et al., 2013; Doerr et al., 2015), etc. Applying
CMA-ES requires explicitly a finite-dimensional search space on which solution candidates
live. In many domains, e.g. robotics, an optimization objective is often defined as a function
of another parametric function. For instance, it might be an overall cost function depend-
ing on a robot controller, e.g. robot skill learning (Stulp and Sigaud, 2012), policy search
(Heidrich-Meisner and Igel, 2009a), or a loss function in contexts of inverse optimal control
(Rückert et al., 2013; Doerr et al., 2015), etc.. A robot controller is usually a parametric
function of predefined feature maps, e.g. RBF features, neural networks. Though showing
a lot of remarkable successes, such parametric approaches as well as their black-box solver,
the parametric CMA-ES, could not model a very rich and flexible solution space, e.g. a
complex behavior space.

In this work, we propose CMA-ES-RKHS that enables functional optimization over a
non-parametric solution space. Specifically, we assume that the solution space is a repro-
ducing kernel Hilbert space (RKHS). Each candidate is a function in RKHS. Modeling the
solution space this way, CMA-ES-RKHS can not only inherit full characteristics from CMA-
ES, but also enjoy other appealing properties. Firstly, CMA-ES-RKHS is able to optimize
a functional objective whose domain is an RKHS. That means the solution space does not
need to depend on any manual parametrization. Secondly, by modeling the solution space
in RKHS, all update steps in CMA-ES-RKHS are handled analytically. We show that up-
dated mean functionals, other intermediate terms, evolution path functionals or conjugate
evolution path functionals are functions in the underlying RKHS. Moreover, the updated
covariance is also an operator on the underlying RKHS. Thirdly, via sparsification in RKHS,
a very complex search space can be represented compactly, however we can still achieve a
solution of guaranteed quality.

By employing CMA-ES-RKHS, we propose a non-parametric direct policy search tech-
nique in which the policy space is an RKHS. As shown by (Bagnell and Schneider, 2003;
Lever and Stafford, 2015; van Hoof et al., 2015; Vien et al., 2016; Tuyen et al., 2017), the
policy in RKHS can be powerful and flexible in solving complex tasks. However their ap-
proaches use functional gradient ascent to update the policy functional that would have
a problem with step-sizes or local optima. It means the optimized policy does not fully
exploit the flexible power of modeling in RKHS, which consists of any complex policies,
including the global optimal one. As a global optimization method, our policy search via
CMA-ES-RKHS is expected to search for such globally optimal policies.

We demonstrate the new CMA-ES-RKHS and direct policy search via CMA-ES-RKHS
in four experiments. The first two synthetic domains demonstrate the advantages of func-
tional optimization in RKHS. The last two experiments are two RL domains, inverted
pendulum and double-pendulum swing-up.

2. Background

We briefly present a background of CMA-ES, its application for direct policy search rein-
forcement learning, and the recently introduced policy search in RKHS.

2

CMA-ES in Reproducing Kernel Hilbert Space

2.1. Covariance Matrix Adaptation - Evolution Strategy

The Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) is a global optimization
method introduced by (Hansen et al., 2003). It works by forming a parametric distribution
over the solution space, e.g. the space of policy parameter in policy search, or the space
of parameters of the loss function in inverse optimal control, etc. It iteratively samples a
population of solution candidates from a parametrized search distribution. These candidates
are then evaluated by a black-box function. Tuples of candidate-evaluation make up a
dataset in order for CMA-ES to update the search distribution, i.e. its mean and its
covariance matrix. Specifically, a cost function f(θ) is parametrized by a parameter space
θ ∈ <n, f : <n 7→ <. It is common that a CMA-ES algorithm maintains a multi-variate
Gaussian distribution over the solution space as θ ∼ N (θ; m,C). At each iteration k, it
generates the kth population of λ candidates from the kth distribution as θi ∼ N (θ; mk,Ck),
i = 1, · · · , λ. Then, the candidates are sorted ascendingly according to their evaluations
f(θi). Only the first µ best candidates are selected for use in updates of mk and Ck. Another
parameter is the global step-size σ ∈ < that controls the convergence rate of the covariance
matrix update. The parameter σ is defined as a global standard deviation. Hence, a full
set of parameters in CMA-ES is {m,C, σ}.

In Algorithm 1, we give a full summary of the CMA-ES algorithm. The updated mean
is a weighted sum of the best µ candidates as in step 7, in which the weights wi are set
to 1/µ or to a better choice log(µ/2)− log(i). The notation yi:λ means the best candidate
out of yi, . . . ,yλ. The covariance matrix update in step 13 consists of three parts: old
information, rank-1 update which computes the change of the mean over time as encoded
in the evolution path pc, and rank-µ update which takes into account the good variations
in the last population. This step-size control update constrains the expected changes of
the distribution. Thus, this update in step 10 is based on the conjugate evolution path
pσ. It aims to accelerate convergence to an optimum, and meanwhile prevents premature
convergence. The other parameters: µw is the variance effective selection mass, c1, cc, cσ
are learning rates, and dσ is a damping factor for σ. The setting of these parameters is well
studied and discussed in-depth in (Hansen, 2016).

The updates of CMA-ES can alternatively be derived using the information-geometric
concept of a natural gradient as shown in (Hansen and Auger, 2014), which shares the same
insight with the natural evolution strategies (NES) (Wierstra et al., 2014).

There are less efficient techniques that can also adapt the covariance matrix: estimation
of distribution algorithms (EDA) and the cross-entropy method (CEM). The major differ-
ence from CMA-ES is at the choice of the reference mean value. EDA and CEM estimate
the variance within the current population, y1:λ, instead of exploiting old information as
encoded in previous C and pc. Specifically, for the Gaussian search distribution, analytic
updates at iteration k for EDA and CEM (Rubinstein and Kroese, 2013; Rubinstein, 1999)

3

Vien Dang Chung

Algorithm 1 The CMA-ES algorithm

1: Initialize m ∈ <n, σ ∈ <+, λ, µ
2: Initialize C = I,pc = 0,pσ = 0
3: while not terminate do
4: Sampling: θi = m + σyi, yi ∼ N (0,C), i = 1, . . . , λ
5: Evaluating: f(θi), i = 1, . . . , λ
6: // mean update
7: m←m + σȳ, where ȳ =

∑µ
1 wiyi:λ

8: // step-size control update

9: pσ ← (1− cσ)pσ +
√
cσ(2− cσ)µwC−

1
2 ȳ

10: σ ← σ exp
(
cσ
dσ

(
‖pσ‖

E‖N (0,I)‖ − 1
))

11: // covariance matrix update
12: pc ← (1− cc)pc +

√
cc(2− cc)µwȳ

13: C← (1− c1 − cµ)C + c1pcp
>
c + cµ

∑µ
1 wiyi:λy

>
i:λ

14: end while

change steps 9 and 13 in Algorithm 2 to

m(k) =
1

µ

µ∑
i=1

θi

C
(k)
EDA =

1

µ

µ∑
i=1

(
θi −m(k)

)(
θi −m(k)

)>
C

(k)
CEM =

µ

µ− 1
C

(k)
EDA

The difference between EDA and CEM is: EDA updates the empirical covariance matrix,
meanwhile CEM updates the unbiased empirical covariance matrix

2.2. Direct policy search in RL

RL algorithms optimize a policy that maps states of the environment to the actions of an
agent. The policy can be optimized using policy search techniques such as policy gradient
(Williams, 1992), natural actor-critic (Peters and Schaal, 2008), or black-box search such
as CEM (Mannor et al., 2003) and CMA-ES (Heidrich-Meisner and Igel, 2009a), etc. The
first two techniques are local methods that can only look for locally optimal policies (more
discussions over their differences can be found in (Heidrich-Meisner and Igel, 2008)). We
first describe an application of CMA-ES for policy search as introduced in (Heidrich-Meisner
and Igel, 2009a), then give a brief introduction of one policy gradient technique that models
policies in reproducing kernel Hilbert space (Lever and Stafford, 2015).

2.2.1. Direct policy search via CMA-ES

Assuming that a Gaussian controller is parameterized by a function space H,

p(a|s;h) ∼ N (h(s); Σ) (1)

4

CMA-ES in Reproducing Kernel Hilbert Space

where a ∈ A is an action, s ∈ S is a state, and assuming Σ = σ2I. For parametric policy
approaches, h may be a neural network or a linear function of predefined features as

h(s) =

n∑
i=1

wiφi(s) (2)

The authors in (Heidrich-Meisner and Igel, 2009a) propose to use the CMA-ES algorithm
to optimize a cumulative reward objective function,

J(θ) = Eπ(θ)

(
T∑
t=0

γtrt

)
(3)

For each candidate θi, its evaluation is J(θi) which is computed using Monte-Carlo simu-
lations. Specifically, a set of N trajectories are sampled by executing π(θi), hence J(θi) ≈
1
N

∑N
j=1R(τj) where R(τj) is a return of trajectory j.

2.2.2. Policy gradient in RKHS

These work (Bagnell and Schneider, 2003) and (Lever and Stafford, 2015) suggests to rep-
resent policies in reproducing kernel Hilbert spaces, where the function h(·) in Eq. 1 is in a
vector-valued function in RKHS HK ,

h(·) =
∑
i

K(si, ·)αi, where αi ∈ A (4)

where K is a vector-valued kernel, K : S×S 7→ L(A) (Micchelli and Pontil, 2005), in which
L(A) is the space of linear operators on A. Using this functional policy parametrization, we
can analytically derive functional gradients by using the Fréchet derivative, and compute
its approximate value given a trajectory set {τi}Ni=1, each of length H,

∇hJ(πh) ≈ 1

N

N∑
i=1

∇h logP (τi;h)R(τi)

=
1

N

N∑
i=1

H∑
t=0

Q(st,at)K(st, ·)Σ−1(at − h(st))

(5)

where Q(st,at) is a sample of the Q-value function of (st,at) (this equality results from the
Policy Gradient theorem (Sutton et al., 1999)). Thus, ∇hJ(πh) is also a function in HK ,
and the functional gradient update at iteration k is

hk+1 ← hk + α∇hJ(πhk) (6)

where α is a step-size. As the representation of each policy hk+1 becomes more complex
after each iteration (Lever and Stafford, 2015), a sparsification technique is often used to
achieve a sparse and adaptive policy. On the other hand, a compatible kernel for Q-functions
Qπ(s,a) can simply be derived based on kernel K, that is Kh as

Kh

(
(s,a), (s′,a′)

)
=
(
K(s, s′)Σ−1(a− h(s))

)>
Σ−1(a′ − h(s′)) (7)

5

Vien Dang Chung

Kernel regression methods can be used to approximate Q easily via kernel matching pursuit
(Vincent and Bengio, 2002), k-LSTDQ (Xu et al., 2007), etc. This framework is called
the compatible RKHS Actor-Critic framework, RKHS-AC, by (Lever and Stafford, 2015).
Though RKHS-AC has very excellent policy modeling, it would only result in locally optimal
policies. A global policy search technique like CMA-ES which may be considered as a
powerful off-the-shelf tool, its current form has many drawbacks. For many applications
of CMA-ES, a parametric objective function is often designed, which requires a set of
predefined feature function. Hence, the choice of features plays a very important role.
Recently, the authors in (Vien et al., 2016) propose a natural actor-critic in RKHS algorithm
by computing the Fisher information operator, which is analogue to the Fisher information
matrix for parametric policies.

3. CMA-ES in Reproducing Kernel Hilbert Space

3.1. Problem statement

We consider a functional optimization problem (Ulbrich, 2009) that finds the maximum
of an unknown functional f : H 7→ <, where H = {h : X 7→ <} is a separable Hilbert
space of input real-valued functions with a domain X . Assuming that H is specifically a
square-integrable function space L2(X , µ) w.r.t a probability measure µ. For each queried
function h ∈ H, an evaluation y = f(h) is returned.

3.2. CMA-ES in RKHS

We propose a new general-purposed CMA-ES-RKHS framework that solves the above prob-
lem. We explicitly assume the function space H is a reproducing kernel Hilbert space
(RKHS) associated with a kernel K. Each h ∈ H is defined as a mapping from an arbitrary
space X to Y, h : X 7→ Y. The function space H may be a vector-valued RKHS (Micchelli
and Pontil, 2005), denoted as HK , with the kernel K : X × X 7→ L(Y), where L(Y) is the
space of linear operators on Y. For example, when X = <n the simplest choice of K might
be K(x, x′) = κ(x, x′)In, where In is an n×n identity matrix, and κ is a scalar-valued kernel
(Schölkopf and Smola, 2002). Each function h ∈ H is then represented as a linear span of
finite elements {xi, yi} as

h(·) =
∑
i

K(xi, ·)yi (8)

Now we define a search distribution over H. A direct extension of parametric CMA-ES is to
use a Gaussian process over the solution function h, h ∼ GP(m,σ2C), where m is a mean
function, C is a covariance operator, and σ is a scalar global step-size. We discuss now how
to update the functionals {m,C} and the parameter σ in our CMA-ES-RKHS framework,
which is also summarvvized in Algorithm 2.

3.2.1. Mean function update in RKHS

Assuming that at iteration k, we can sample a set of λ functions g̃i ∼ GP(0, C) (Step 4),
many sampling techniques are basically described in (Rasmussen and Williams, 2006). Our
following derivation is not restricted to which kernel, vector-valued or scalar-valued, is used.

6

CMA-ES in Reproducing Kernel Hilbert Space

Algorithm 2 The CMA-ES-RKHS algorithm

1: Initialize m ∈ HK , σ ∈ <+, λ, µ
2: Initialize C = δ(·, ·), pc ∈ HK , pσ ∈ HK
3: while (not terminate) do
4: Sampling : g̃i ∼ GP(0, C), i = 1, . . . , λ
5: Via kernel regression: for each g̃i, fit a function gi ∈ HK
6: Set samples: hi = m+ σ(t)gi
7: Evaluating : fi = f(hi), i = 1, . . . , λ
8: // mean update
9: m← m+ σḡ, where ḡ =

∑µ
1 wigi:λ

10: // step-size control update

11: pσ ← (1− cσ)pσ +
√
cσ(2− cσ)µwC

− 1
2 ḡ

12: σ ← σ exp
(
cσ
dσ

(
‖pσ‖

E‖GP(0,δ(·,·))‖ − 1
))

13: // covariance matrix update
14: pc ← (1− cc)pc +

√
cc(2− cc)µwḡ

15: C ← (1− c1 − cµ)C + c1pc ⊗ pc + cµ
∑µ

1 wigi:λ ⊗ gi:λ
16: Sparsify m,C and derive C−

1
2

17: end while

A sample from a Gaussian process is not in HK with probability of 1, as discussed in detail
by (Adler, 1981). For any sampling techniques of a Gaussian process, we receive g̃i in a form
of data tuples (x(i), y(i)) from which we can use kernel ridge regression with the covariance
operator C(·, ·) (Step 5). Hence, in our framework each function g̃i is approximated by
a function gi ∈ HK . As a result, a new function candidate sampled from the function
distribution is hi = m+ σgi. The new mean function is updated as (Step 9),

m = m+ σ

µ∑
i=1

wigi:λ ∈ HK (9)

where the normalized weights wi satisfy

µ∑
i=1

wi = 1, w1 ≥ w2 ≥ · · · ≥ wµ > 0

As a result, after the update the new functional mean is an element in HK . We denote ḡ as

ḡ =

µ∑
i=1

wigi:λ

There are a number of settings for w, which might inherit from CMA-ES, such as: wi = 1/µ,
wi ∝ µ− i+1; or a better choice wi = log(µ+ 1

2)− log(i). In our experiment, we implement
the last choice.

3.2.2. Covariance operator update

The covariance operator update is based on the best selected candidate functions, based on
their evaluations f(hi). Hence an empirical estimate of the covariance operator C on HK ,

7

Vien Dang Chung

called rank-µ update, is

C = (1− cµ)C + cµ

µ∑
i=1

wigi:λ ⊗ gi:λ

Similar to parametric CMA-ES, we also consider the change of the mean function over time
by estimating a functional evolution path pc as (Step 14),

pc = (1− cc)pc +
√
cc(2− cc)µwḡ ∈ HK (10)

where µw is a variance-effectiveness constant. This is low-pass filtered of chosen steps ḡ,
hence pc is also an element in RKHS HK . As a result, a complete update of the covariance
operator that combines both rank-1 and rank-µ is computed as (Step 15),

C = (1− cµ − c1)C + c1pcp
>
c + cµ

µ∑
i=1

wigi:λ ⊗ gi:λ (11)

where cc is the backward time horizon for the functional evolution path pc, and c1, cµ
are learning rates of rank-1 and rank-µ respectively. This reduces to a rank-1 update if
c1 = 1, cµ = 0. Similarly, the update becomes a rank-µ update when c1 = 0, cµ = 1.

3.2.3. Step-size update

The global step-size σ is adapted through the computation of a functional conjugate evolu-
tion path as (Step 11),

pσ = (1− cσ)pσ +
√
cσ(2− cσ)µwC−

1
2 ḡ (12)

where cσ is a backward time horizon for the conjugate evolution path pσ. According to the
bounded inverse theorem in functional analysis (Conway, 2013), C as computed in Eq. 11
is a linear operator in the RKHS HK , hence it has a bounded inverse C−1. Therefore, pσ
is updated in a way that renders it an element in HK . The volume and the correlation
of the selected steps are compared to the expected value of the standard Gaussian process
with a Dirac kernel. The fact that the former is larger than the latter makes σ increased,
otherwise decreased. The update formula of σ (Step 12) is

σ = σ exp

(
cσ
dσ

(
‖pσ‖

E‖GP(0, δ(·, ·))‖
− 1

))
(13)

The term E‖GP(0, δx)‖ can be computed in advance using Monte-Carlo simulations

E‖GP(0, δ(·, ·))‖HK ≈
1

N

N∑
i=1

〈gi(·), gi(·)〉HK

where gi(·) is a function in HK approximated (via kernel ridge regression) from a sample g̃i
drawn from GP(0, δ(·, ·)).

8

CMA-ES in Reproducing Kernel Hilbert Space

3.2.4. Sparsification and Adaptive Representation

We now discuss implementation concerns of the CMA-ES-RKHS algorithm. The first and
most critical one is the representation issue of mean functions m and covariance operators
C. Then, it follows with discussions of parameter setting in CMA-ES-RKHS. Then we
discuss how to deal with the update rule in Eq. 12 that involves to find the inverse operator

C−
1
2 .
Sparsification (Step 16): The updates of the mean function in Eq. 9 and covariance

operator in Eq. 11 make their representation complexity increase linearly on the number of
iterations. Though we receive an adaptive, flexible and complex policy, this would result in
an expensive evaluation cost, e.g. computing m(x) or C(h, h′) when needed, where h, h′ ∈
HK . Sparsification is a technique that is able to keep these kernel-based representation
sparse and approximately accurate. Assuming that after each iteration, m and C are re-
written in forms of

m =

N1∑
i

βiK(xi, ·), C =

N2∑
i

λihi ⊗ hi (14)

where xi ∈ X , hi ∈ HK , and βi, λi ∈ Y. A sparsification algorithm would sparsify m and C
to become

m =

n1∑
i

β̃iK(x̃i, ·), C =

n2∑
i

λ̃ih̃i ⊗ h̃i

where x̃i ∈ X , h̃i ∈ HK and n1 � N1, n2 � N2. In our CMA-ES-RKHS framework, we
resort to two different sparsification techniques separately for m and C. We propose to
use the kernel matching pursuit algorithm (Vincent and Bengio, 2002) to sparsify m. Its
idea is to add kernel features K(xi, ·) sequentially and greedily that maximally reduce the
current approximation error. A tolerance constant is used to check the error reduction level
before adding a new kernel feature. The use of tolerance also helps achieving more compact
representation.

In general, we can use the kernel matching pursuit algorithm (Vincent and Bengio, 2002)
to sparsify C. However, we aim to look for a method that will both sparsify C and together

compute the inverse square root operator C−
1
2 . Therefore, we propose to use the kernel

PCA method (kPCA) from (Schölkopf et al., 1997) for achieving efficiently and fast both a
sparse and compact covariance operator and its inverse square root operator. Specifically,
we rewrite C in Eq. 14 as

C = HΛH> = ΦΦ>

where H is a matrix whose ith column is hi, a N2 ×N2 diagonal matrix Λ = diag(λi), and

Φ = HΛ
1
2 . Via kPCA, C can be decomposed through a decomposition of the N2×N2 Gram

matrix G = Φ>Φ, in which G(i, j) =
√
λiλj〈hi, hj〉HK . If a singular value decomposition

(SVD) of G is G = UDU>, the decomposition of C via kPCA is C = V DV >, where

V = ΦUD−
1
2 are orthonormal eigenfunctions of C, hence V = HΛ

1
2UD−

1
2 . One could

easily show that each eigenfunction of C is a linear span of {hi}N2
i=1,

vi =
∑
i

wijhj(·)

9

Vien Dang Chung

where wij is an element of a matrix W = Λ
1
2UD−

1
2 . Hence vi is also an element in HK .

From this kPCA of C, we are now able to sparsify C by choosing only a small set of
eigenfunctions of principal eigenvalues. Moreover, from the decomposition of C, the inverse

square root operator C−
1
2 is derived as

C−
1
2 = V D−

1
2V > (15)

which is a linear operator in RKHS HK .
Parameter Setting: The mean function is represented by n1 adaptive kernel features,

hence it has n1 pivotal parameters. In CMA-ES, parameter setting is based on the number
of free parameters, the dimension of the search space. Though it is not precise, we use the
same setting of CMA-ES for CMA-ES-RKHS, i.e. the parameters: c1, cc, cµ, cσ, dσ based on
n1. We call n1 the effective dimensionality on our CMA-ES-RKHS.

3.3. EDA and CEM in RKHS

For a short notice, the derivations of CMA-ES-RKHS can easily be transferred to derive
EDA-RKHS and CEM-RKHS algorithms. Specifically, the updates at iteration k for EDA-
RKHS and CEM-RKHS change step 9 and 15 in Algorithm 2 as follows

m(k) =
1

µ

µ∑
i=1

hi ∈ HK

C
(k)
EDA-RKHS =

1

µ

µ∑
i=1

(hi −m(k))⊗ (hi −m(k))

C
(k)
CEM-RKHS =

µ

µ− 1
C

(k)
EDA-RKHS

though the updates of C
(k)
EDA-RKHS and C

(k)
CEM-RKHS are simpler than C of CMA-ES-RKHS,

they result in similar covariance operators on HK . Hence the implementation technique
of EDA-RKHS and CEM-RKHS can be similar to that of CMA-ES-RKHS which has been
discussed above. Therefore, we will not put them in comparisons.

4. Direct Policy Search via CMA-ES-RKHS

In RL, there is recent effort to model policies as functions in RKHS (Bagnell and Schneider,
2003; Lever and Stafford, 2015; Vien et al., 2016). Such RKHS policy gradient approaches
suffer from a problem of step-size. Though an extended work, RKHS EM-based policy
search (RKHS-PoWER) by (Vien et al., 2016), would overcome this issue, it can only
converge to local optima. We propose a new black-box direct policy search in RKHS that
is based on CMA-ES-RKHS (the extension to EDA-RKHS and CEM-RKHS is similar).
The policy is a function in RKHS with a kernel K as first introduced in Eq. 4. Different
from the parametric CMA-ES direct policy search (Heidrich-Meisner and Igel, 2009a), our
non-parametric modeling enables optimization in a very rich policy space and allows to
learn more complex policies that also enjoy adaptive and compact representation and do
not depend on fixed features.

10

CMA-ES in Reproducing Kernel Hilbert Space

Adaptive CMA-ES Direct Policy Search: There is a naive way that modifies the
parametric CMA-ES direct policy search (Heidrich-Meisner and Igel, 2009a) to become
adaptive, which will be used as base-line to compare to CMA-ES-RKHS policy search.
Assuming that we use a controller which is a linear function of RBF features φi(si) in which
si is a centre,

h(s) =
n∑
i=1

wiφi(si) (16)

Applying CMA-ES direct policy search method (Heidrich-Meisner and Igel, 2009a), the
parameter space would be w = {wi} ∈ <n. We make a slight change to assume that the
parameter space is {wi, si}, called adaptive CMA-ES direct policy search (CMA-ES-A). A
clear problem of CMA-ES-A is in determining the scaling of these parameters. However it is
in principle overcome by the RKHS norm on functions as in our CMA-ES-RKHS algorithm.

5. Experiments

We first evaluate the advantages and general applications of CMA-ES-RKHS on two simple
functional optimization problems: 1-D and 2-D function spaces. We compare the behavior
of CMA-ES-RKHS with other three base-line methods: the standard CMA-ES, the adaptive
CMA-ES version (CMA-ES-A), and the functional gradient techniques. The next experi-
ments are two RL tasks, inverted pendulum and double-pendulum. We compare our direct
policy search via CMA-ES-RKHS to the standard CMA-ES policy search, the adaptive
CMA-ES policy search, a parametric actor-critic, and the actor-critic in RKHS (RKHS-
AC) methods. In all experiments, we use the RBF kernel where the bandwidths are set
using median-trick. These experiments aim to evaluate the proposed CMA-ES-RKHS for:
i) the quality of the returned compact solution function, ii) the flexibility and power of the
proposed method in capturing a complex solution function which can not be found easily
by existing methods, iii) the applicability in practice, i.e. for direct policy search.

5.1. Synthetic Domains

We design two unknown 1-D and 2-D functions f∗. Each function is a mixture of two (multi-
variate) Gaussians, respectively. All optimizers are tasked to find a function h : X 7→ <,
where h ∈ HK that minimizes the objective function as a square distance

J(h) =

∫ xT

x0

(
f∗(x)− h(x)

)2
dx

where x ∈ <k, k = 1, 2 correspondingly to the 1-D or 2-D domain. This task is a simplified
version of many similar problems in machine learning and robotics, e.g. regularized risk
functional (Schölkopf and Smola, 2002), trajectory optimization (Toussaint, 2014), trajec-
tory optimization in RKHS (Marinho et al., 2016), loss minimization inverse optimal control
(Doerr et al., 2015), etc.. However, these work must rely on discretization and parametric
modeling.

Functional gradient: Using functional gradient requires to know J and have access
to the ground-truth function f∗ (CMA-ES-RKHS only accesses to evaluations J(h)) from

11

Vien Dang Chung

which we are able use discretization to approximate J as

J(h) ≈ 1

T

T∑
k=0

(
f∗(xk)− h(xk)

)2
The functional gradient can be computed as: ∇hJ(h) =

∑T
k=0 2

(
h(xk) − f∗(xk)

)
K(tk, ·).

Thus, a functional gradient update is h← h+α∇hJ(h). A sparsification technique (Vincent
and Bengio, 2002) can be used to achieve a compact representation of h which renders the
functional gradient approach an adaptive method too. That means the representation of h
will be adaptively adapted to best approximate f∗. Hence, discretization is required to be
fine enough (T is large enough, we used T � N) to guarantee accurate approximation.

CMA-ES: We assume that a parametric representation of h as a linear expansion of
N features:h(x) =

∑N
k=1wkφk(x) = w>φ(x). We use RBF features φk(x) = exp(−‖x −

xt‖2/σ2) in which N centers xt are regular intervals in the domain of x. Hence we apply
CMA-ES to optimize J in a parameter space w ∈ <N . CMA-ES-A would optimize over a
search space of {w, {xt}Nt=1}.

Results: For all optimizers, we use the same number N of features in CMA-ES and
CMA-ES-A, and centres after sparsification in CMA-ES-RKHS and functional gradient
methods. We use N = 10 for 1-D task, and N = 100 for 2-D task. As mentioned in
parameter setting section, we use a standard way of CMA-ES to initialize other parameters,
N is the effective dimensionality in CMA-ES-RKHS. The results are reported w.r.t the
number of evaluations, i.e queries to the objective function.

We report the squared error J and the solution function for the 1-D task in Fig. 1 and
the 2-D task in Fig. 2 and Fig. 3 (on the left). We create two versions for CMA-ES-A,
one with good initialization (initial values of xt are centres for CMA-ES) and one with
random initialization, called CMA-ES-A-R. In Fig. 1, the performance of CMA-ES-A-R is
very bad in terms of error. As demonstrated on the right picture, it can detect only one
mode of the optimal function. Hence we give up reporting results from CMA-ES-A-R in
other domains. One remarkable note is that CMA-ES initialization does not consists of two
correct modes in its set of centres, hence it gives poor approximation error. With adaptive
ability, CMA-ES-A and CMA-ES-RKHS are able to estimate the true modes correctly.

In the larger domain (2-D), CMA-ES-A performs much worse than our method. This
is explained by the way our method approaches from a principled way, i.e kernel methods,
for the scaling of parameters. The functional gradient method performs very well which
re-confirms that it can be very competitive when gradient information is known (in this
case the form of J(h) is known). Fig. 2 shows very interesting results where other methods
like CMA-ES and CMA-ES-A are still struggling around the optimal regions.

5.2. Inverted Pendulum

We use the same setting of the inverted pendulum domain as in (Lever and Stafford, 2015).
This problem has an 1-dim action space [−3, 3], a state space s = (θ, ω), where θ ∈ [−π, π]
is angular position and ω ∈ [−4π, 4π] is angular velocity. The system always starts at
s0 = (−π, 0) (downward position). The reward function is r(s, a) = exp(−0.5θ2) that
requires to bring the pole to the upright position and keep it balanced there. The dynamics
of the system is θ′ = θ + 0.05ω + ε; ω′ = ω + 0.05a + 2ε, ε is a small Gaussian noise

12

CMA-ES in Reproducing Kernel Hilbert Space

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400 1600

S
qu

ar
ed

 E
rr

or

Evaluations

CMA-ES
CMA-ES-A

CMA-ES-A-R
Func-Grad

CMA-ES-RKHS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50

y

x

Ground truth
CMA-ES

CMA-ES-A
CMA-ES-A-Random
Functional gradient

CMA-ES-RKHS

Figure 1: 1D synthetic domain: (left) squared error, (right) solution functions

Ground-truth

CMA-ES

Ground-truth

CMA-ES-A

Ground-truth

Func-gradient

Ground-truth

CMA-ES-RKHS

Figure 2: 2D synthetic domain: contours of levels equivalent to the first and second deviations

N (0, 0.022). We use N = 50 centres or features for all algorithms. We set γ = 0.99 and a
horizon H = 400.

The results of mean performance and its 95% confidence are computed over 15 runs
and reported in Fig. 3 (on the center). In this task, CMA-ES performs better than CMA-
ES-A and CMA-ES-RKHS. CMA-ES-A has a much bigger search space comparing to that
of CMA-ES, 3N vs. N parameters. We conjecture that CMA-ES-RKHS performs worse
because we use N as the effective dimensionality to set its parameters. Theoretically, CMA-
ES-RKHS optimizes over a potentially infinite dimensional space. We tried to increase its
effective dimensionality to 2N , called Eff. CMA-ES-RKHS. This modification improves the
performance significantly. CMA-ES-A-R performs slowly but keeps improving constantly.
Local direct policy search algorithms, AC and RKHS-AC, do not perform comparably to
the others.

5.3. Double Pendulum

This problem consists of two links and two under-actuated joints. The system state is 4-
dimensional of joint position and velocities s = {θ1, θ̇1, θ2, θ̇2}. Actions are motor torques
a = [u1, u2], which are limited in [−5N, 5N]. The dynamics is simulated using second-order
Runge-Kutta. We use a low sampling frequency of 50Hz at which torques could be applied.
The start state is {0,−π, 0, 0}. The reward function is r(s) = exp(−‖s − s∗‖W), where
s∗ = {0, 0, 0, 0} and W = diag(0.25, 0.0025, 0.25, 0.0025). Each episode is simulated in 6s,
which is equivalent to a horizon of 300 steps. We use N = 256 features or centres, and
γ = 0.99. The optimal policy returns 88. We only compare between global policy search
methods via CMA-ES, CMA-ES-A, and CMA-ES-RKHS. In this complex task, CMA-ES-
RKHS has clearly outperformed other methods as seen in Fig. 3 (right).

13

Vien Dang Chung

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
rr

or

Evaluations

CMA-ES

CMA-ES-A

Functional gradient

CMA-ES-RKHS

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000

D
is

co
un

te
d

cu
m

ul
at

iv
e

re
w

ar
d

Episodes

Actor-Critic
RKHS-AC

CMA-ES
CMA-ES-A

CMA-ES-A-Rand
CMA-ES-RKHS

 Eff. CMA-ES-RKHS
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1000 2000 3000 4000 5000

D
is

co
un

te
d

cu
m

ul
at

iv
e

re
w

ar
d

Episodes

CMA-ES
CMA-ES-A

CMA-ES-RKHS

Figure 3: Results for (left) 2D synthetic domain, (center) the inverted pendulum domain; (right)
Double-link

6. Conclusion

This paper proposes a CMA-ES-RKHS framework that enables functional optimization
where the search is handled over a function space. The fact that the function space is mod-
eled in reproducing kernel Hilbert space results in analytic update rules for CMA-ES-RKHS.
On the other hand, the solution function attains compactness and flexibility characteristics.
We apply CMA-ES-RKHS for direct policy search in which the policy is modeled in RKHS.
Our experiments show that both CMA-ES-RKHS and direct policy search via CMA-ES-
RKHS are able to represent a complex solution function compactly and adaptively. The
result shows many interesting aspects and results of CMA-ES-RKHS: i) explicitly han-
dling functional optimization in principle; ii) overcoming the issue of hand-designed feature
functions in many practical applications of CMA-ES. More practical applications of CMA-
ES-RKHS would be a very interesting future research direction.

Acknowledgement

This research is funded by Vietnam National Foundation for Science and Technology De-
velopment (NAFOSTED) under grant number 102.05-2016.18; and by the Basic Science
Research Program through National Research Foundation of Korea (NRF) of the Ministry
of Education, Science, and Technology under grant number 2014R1A1A2057735.

References

Robert J. Adler. The Geometry of Random Fields. John Wiley & Sons, 1981.

J. Andrew (Drew) Bagnell and Jeff Schneider. Policy search in reproducing kernel hilbert
space. Technical Report CMU-RI-TR-03-45, Robotics Institute, Pittsburgh, PA, Novem-
ber 2003.

John B Conway. A course in functional analysis, volume 96. Springer Science & Business
Media, 2013.

Andreas Doerr, Nathan D. Ratliff, Jeannette Bohg, Marc Toussaint, and Stefan Schaal.
Direct loss minimization inverse optimal control. In Robotics: Science and Systems XI,
2015.

Sehoon Ha and C. Karen Liu. Iterative training of dynamic skills inspired by human coaching
techniques. ACM Trans. Graph., 34(1):1:1–1:11, 2014.

14

CMA-ES in Reproducing Kernel Hilbert Space

Sehoon Ha and C. Karen Liu. Evolutionary optimization for parameterized whole-body
dynamic motor skills. In ICRA, pages 1390–1397, 2016.

Nikolaus Hansen. The CMA evolution strategy: A tutorial. CoRR, abs/1604.00772, 2016.

Nikolaus Hansen and Anne Auger. Principled design of continuous stochastic search: From
theory to practice. In Theory and principled methods for the design of metaheuristics,
pages 145–180. Springer, 2014.

Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. Reducing the time complex-
ity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary Computation, 11(1):1–18, 2003.

Verena Heidrich-Meisner and Christian Igel. Similarities and differences between policy
gradient methods and evolution strategies. In ESANN, pages 149–154. Citeseer, 2008.

Verena Heidrich-Meisner and Christian Igel. Neuroevolution strategies for episodic rein-
forcement learning. J. Algorithms, 64(4):152–168, 2009a.

Verena Heidrich-Meisner and Christian Igel. Hoeffding and bernstein races for selecting
policies in evolutionary direct policy search. In ICML, pages 401–408, 2009b.

Guy Lever and Ronnie Stafford. Modelling policies in mdps in reproducing kernel hilbert
space. In AISTATS, 2015.

Shie Mannor, Reuven Y. Rubinstein, and Yohai Gat. The cross entropy method for fast pol-
icy search. In Machine Learning, Proceedings of the Twentieth International Conference
(ICML 2003), August 21-24, 2003, Washington, DC, USA, pages 512–519, 2003.

Zita Marinho, Byron Boots, Anca Dragan, Arunkumar Byravan, Geoffrey J. Gordon, and
Siddhartha Srinivasa. Functional gradient motion planning in reproducing kernel hilbert
spaces. In RSS, 2016.

Charles A. Micchelli and Massimiliano Pontil. On learning vector-valued functions. Neural
Computation, 17(1):177–204, 2005.

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7):1180–1190, 2008.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2006.

Reuven Rubinstein. The cross-entropy method for combinatorial and continuous optimiza-
tion. Methodology and computing in applied probability, 1(2):127–190, 1999.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach
to combinatorial optimization, Monte-Carlo simulation and machine learning. Springer
Science & Business Media, 2013.

Elmar A. Rückert, Gerhard Neumann, Marc Toussaint, and Wolfgang Maass. Learned
graphical models for probabilistic planning provide a new class of movement primitives.
Front. Comput. Neurosci., 2013, 2013.

15

Vien Dang Chung

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels Support Vector Ma-
chines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine
Learning series, MIT Press, 2002.

Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. Kernel principal com-
ponent analysis. In ICANN, pages 583–588, 1997.

Freek Stulp and Olivier Sigaud. Path integral policy improvement with covariance matrix
adaptation. In ICML, 2012.

Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In NIPS, pages
1057–1063, 1999.

Jie Tan, Yuting Gu, Greg Turk, and C Karen Liu. Articulated swimming creatures. ACM
Transactions on Graphics (TOG), 30(4):58, 2011.

Marc Toussaint. Newton methods for k-order Markov constrained motion problems. CoRR,
abs/1407.0414, 2014.

Le Pham Tuyen, Ngo Anh Vien, and P.Marlith Jaramillo TaeChoong Chung. Importance
sampling policy gradient algorithms in reproducing kernel hilbert space. Artificial Intel-
ligence Review, 2017. To Appear.

Michael Ulbrich. Optimization methods in Banach spaces. In Optimization with PDE
Constraints, pages 97–156. Springer, 2009.

H. van Hoof, J. Peters, and G. Neumann. Learning of non-parametric control policies with
high-dimensional state features. In (AISTATS, 2015.

Ngo Anh Vien, Peter Englert, and Marc Toussaint. Policy search in reproducing kernel
hilbert space. In IJCAI, pages 2089–2096, 2016.

Pascal Vincent and Yoshua Bengio. Kernel matching pursuit. Machine Learning, 48(1-3):
165–187, 2002.

Jack M. Wang, Samuel R. Hamner, Scott L. Delp, and Vladlen Koltun. Optimizing locomo-
tion controllers using biologically-based actuators and objectives. ACM Trans. Graph.,
31(4):25:1–25:11, 2012.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmid-
huber. Natural evolution strategies. Journal of Machine Learning Research, 15(1):949–
980, 2014.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992.

Xin Xu, Dewen Hu, and Xicheng Lu. Kernel-based least squares policy iteration for rein-
forcement learning. IEEE Trans. Neural Networks, 18(4):973–992, 2007.

16

	Introduction
	Background
	Covariance Matrix Adaptation - Evolution Strategy
	Direct policy search in RL
	Direct policy search via CMA-ES
	Policy gradient in RKHS

	CMA-ES in Reproducing Kernel Hilbert Space
	Problem statement
	CMA-ES in RKHS
	Mean function update in RKHS
	Covariance operator update
	Step-size update
	Sparsification and Adaptive Representation

	EDA and CEM in RKHS

	Direct Policy Search via CMA-ES-RKHS
	Experiments
	Synthetic Domains
	Inverted Pendulum
	Double Pendulum

	Conclusion

