1,005 research outputs found

    Carbon materials for the electrooxidation of nucleobases, nucleosides and nucleotides toward cytosine methylation detection: a review

    Get PDF
    Improved analytical methods for the determination of the degree of methylation of DNA are of vital relevance, as they may enable the detection of certain diseases, such as carcinomas and infertility, in the early stages of development. Among the analytical methods for the detection and quantification of epigenetic modifications in DNA, electroanalytical platforms are emerging as potential feasible tools for clinical purposes. This review describes the fundamentals of the electrochemical responses of nucleobases, nucleosides, nucleotides and DNA in general from the pioneering studies at mercury electrodes to the most recent studies during the last two decades. Concerning these latter studies, we will exclusively focus on carbonaceous electrodes such as carbon, graphite, glassy carbon, boron-doped diamond, carbon nanofibers, carbon nanotubes and graphene. This review will also provide an overview of the feasibility of the development of electrochemical sensors for the simultaneous determination and quantification of naturally occurring DNA bases and nucleotides as well as the methylation of cytosine in DNA using carbon materials.The authors give thanks to the University of Alicante for funding and collaboration in this review. This work has also been financially supported by the MICINN-FEDER (Spain) through the projects CTQ2013-48280-C3-3 R and CTQ2013-44083-P

    An Easy Method for Calculating Kinetic Parameters of Electrochemical Mechanisms: Temkin’s Formalism

    Get PDF
    One of the typical problems addressed in electrochemical textbooks is how to define the theoretical kinetic law of an electrochemical reaction and how to propose a plausible mechanism for this reaction from its kinetic parameters, usually the Tafel slope and reaction orders.This work has been financially supported by the MEC (Spain) through CTQ2013-48280-C3-3-R project

    Electrocatalysis on shape-controlled metal nanoparticles: Progress in surface cleaning methodologies

    Get PDF
    The use of shape-controlled metal nanoparticles has produced not only a clear enhancement in the electrocatalytic activity of different reactions of interest but also a better understanding of the effect of the surface structure on nanoscaled materials. However, it is well-accepted that a correct understanding of the correlations between shape/surface structure and electrochemical reactivity indispensably requires the use of clean surfaces. In this regard, and considering that most of the synthetic methodologies available in the literature for the preparation of these shaped metal nanoparticles employ capping agents, the development of effective surface cleaning methodologies able to remove such capping agents from the surface of the corresponding nanoparticles, becomes an extremely important prerequisite to subsequently evaluate their electrocatalytic properties for any reaction of interest. Consequently, in this contribution, we summarize the most relevant advances about surface cleaning procedures applied to different shaped metal nanoparticles for electrocatalytic purposes. It is worth mentioning that this work will only include contributions in which the surface cleanness of the samples is specifically evaluated using well-established electrochemical tools.This work has been financially supported by the MINECO of Spain through project CTQ2013-48280-C3-3-R. JSG acknowledges financial support from VITC (Vicerrectorado de Investigación y Transferencia de Conocimiento) of the University of Alicante

    Electrochemical Oxidation of Small Organic Molecules on Au Nanoparticles with Preferential Surface Orientation

    Get PDF
    The surface orientation effect on the oxidation of small organic molecules such as methanol, formaldehyde, ethanol, and glycerol has been studied on Au nanoparticles in alkaline medium. Two sets of Au nanoparticles enriched in (100) and (111) facets were synthetized by using colloidal methods in presence of cetyltrimethylammonium bromide. The nanoparticles were physically characterized by using TEM and XRD and electrochemically characterized by using Pb underpotential deposition as a surface-structure probe. It is reported that, although methanol oxidation was similar in both types of nanoparticles, the oxidation of formaldehyde presented a clear surface orientation effect. For this reaction, nanoparticles with (111) preferential orientation presented higher current densities at low potentials, whereas Au(100) nanoparticles exhibited higher activity at potentials more positive than 1.0 V versus RHE. On the other hand, for glycerol and ethanol oxidations, the onset of the reaction was similar in both types of particles, although Au(111) nanoparticles showed higher current densities than the Au(100) ones.P.R. acknowledges financial support from the Netherlands Organization for Scientific Research (NWO) through a VENI grant and the University of Birmingham through a Birmingham Fellowship

    Oxidation of ethanol on platinum nanoparticles: surface structure and aggregation effects in alkaline medium

    Get PDF
    The ethanol oxidation reaction in 0.1 M NaOH on Pt nanoparticles with different shapes and loadings was investigated using electrochemical and spectroscopic techniques. The surface structure effect on this reaction was studied using well-characterized platinum nanoparticles. Regardless of the type of Pt nanoparticles used, results show that acetate is the main product with negligible CO2 formation. From the different samples used, the nanoparticles with a large amount (111) of ordered domains have higher peak currents and a higher onset potential, in agreement with previous works with single crystal electrodes. In addition, spherical platinum nanoparticles supported on carbon with different loadings were used for studying possible diffusional problems of ethanol to the catalyst surface. The activity in these samples diminishes with the increase of Pt loading, due to diffusional problems of ethanol throughout the whole Pt nanoparticle layer, being the internal part of the catalyst layer inactive for the oxidation. To avoid this problem and prepare more dispersed nanoparticle catalyst layers, deposits were dried while the carbon support was rotated to favor the dispersion of the layer around the support. The improvement in the electrocatalytic activity for ethanol oxidation confirms the better performance of this procedure for depositing and drying.This work has been financially supported by the Ministerio de Economía y Competitividad and Generalitat Valenciana through projects CTQ2013-44083-P and PROMETEOII/2014/013, respectively

    On the behavior of CO oxidation on shape-controlled Pt nanoparticles in alkaline medium

    Get PDF
    In this work, the behavior of the CO electro-oxidation reaction on shape-controlled Pt nanoparticles in alkaline medium was examined in order to understand the effect of the surface structure on this reaction. A series of experiments using Pt nanoparticles of different surface structures/shapes was used and the results obtained were compared with the previous knowledge gained from stepped platinum single crystal electrodes. Independently of the preferential orientation of the nanoparticles, the CO oxidation voltammetry exhibits two main peaks: one at ca. 0.56–0.59 V and the second one at 0.66–0.67 V, being the intensity of the peaks dependent on the shape of the nanoparticle. These two peaks have been assigned to the oxidation of CO on the (1 1 1) terraces and on the rest of the sites, respectively. The appearance of two differentiated peaks reveals that these (1 1 1) terraces and the rest of the sites on the nanoparticle surface behave independently of the presence of the other type of sites, that is, they are not connected. The results are discussed considering the effects of the surface mobility of CO and of the OH adsorption properties on the different sites in the oxidation peaks.Farias, M.J.S. would like to thanks CNPq, Brazil, for financial support for his postdoctoral stay at Universidad de Alicante. This work has been financially supported by the MICINN (Spain) (project CTQ2010-16271) and Generalitat Valenciana (project PROMETEO/2009/045, FEDER)

    Adatom modified shape-controlled platinum nanoparticles towards ethanol oxidation

    Get PDF
    Different adatom modified shape-controlled Pt nanoparticles have been prepared and their electrocatalytic properties have been evaluated toward ethanol electrooxidation. Based on previous findings with Pt model surfaces, Sn, Rh, Ru and Pb adatoms have been selected as promising surface modifiers. The different adatoms have been gradually incorporated on the surface of the preferentially oriented (100) and (111) Pt nanoparticles under electrochemical conditions. The results obtained in 0.5 M H2SO4 indicated that, among the selected adatoms, Sn-modified nanoparticles displayed not only a significant shift to negative values on the onset potential of the ethanol oxidation, but also an important decrease on the hysteresis between the positive and negative sweeps. Interestingly, in chronoamperometic measurements at 0.6 V, the oxidation enhancement factors have been found to be dependent on the surface structure of the Pt nanoparticles. On the other hand, Ru and Pb-modified Pt nanoparticles only presented a rather small oxidation enhancement, whereas the activity of the Rh-modified Pt nanoparticles clearly diminished. In alkaline solutions, the oxidation mechanism changes, and the adsorption of Rh, Sn and Pb on the platinum surfaces just displays small catalytic effect at lower coverage for the potential onset in the voltammetric experiments. Ru adsorption does not present any positive effect over the reaction.This work has been financially supported by the Ministerio de Economía y Competitividad (project CTQ2013-44083-P) and Generalitat Valenciana (project PROMETEOII/2014/013)

    Spectroelectrochemical Study of the Photoinduced Catalytic Formation of 4,4′-Dimercaptoazobenzene from 4-Aminobenzenethiol Adsorbed on Nanostructured Copper

    Get PDF
    Surface-enhanced raman scattering (SERS) spectra of self-assembled monolayers of 4-aminobenzenethiol (4-ABT) on copper (Cu) and silver (Ag) surfaces decorated with Cu and Ag nanostructures, respectively, have been obtained with lasers at 532, 632.8, 785, and 1064 nm. Density functional theory (DFT) has been used to obtain calculated vibrational frequencies of the 4-ABT and 4,4′-dimercaptoazobenzene (4,4′-DMAB) molecules adsorbed on model Cu surfaces. The features of the SERS spectra depend on the electrode potential and the type and power density of the laser. SERS spectra showed the formation of the 4,4′-DMAB on the nanostructured Cu surface independently of the laser employed. For the sake of comparison SERS spectra of a self-assembled monolayer of the 4-ABT on Ag surfaces decorated with Ag nanostructures have been also obtained with the same four lasers. When using the 532 and 632.8 nm lasers, the 4,4′-DMAB is formed on Cu surface at electrode potentials as low as −1.0 V (AgCl/Ag) showing a different behavior with respect to Ag (and others metals such as Au and Pt). On the other hand, the surface-enhanced infrared reflection absorption (SEIRA) spectra showed that in the absence of the laser excitation the 4,4′-DMAB is not produced from the adsorbed 4-ABT on nanostructured Cu in the whole range of potentials studied. These results point out the prevalence of the role of electron–hole pairs through surface plasmon activity to explain the obtained SERS spectra.Financial support from Ministerio de Economía y Competitividad (Projects CTQ2013-48280-C3-3-R and CTQ2013-44083-P), Fondos Feder, and the University of Alicante are greatly acknowledged

    Spectroelectrochemical Behaviour of 4-Aminobenzenethiol on Nanostructured Platinum and Silver Electrodes

    Get PDF
    The adsorption of 4-aminobenzenethiol (4-ABT) on Ag and Pt nanoparticles is studied by spectroelectrochemical means (cyclic voltammetry, Surface-Enhanced Raman Spectroscopy (SERS) and Surface-Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Similar SERS spectra are obtained when 4-ABT is adsorbed on platinum and silver nanostructured substrates. In addition, unless a low power density of the laser is used, these spectra show, both under open circuit conditions and when applying electrode potentials above -0.50 V, bands not observed in the normal Raman spectrum of 4-ABT. These bands disappear when the electrode potential is shifted to more negative values. Conversely, the SEIRA spectra of 4-ABT adsorbed on Ag do not show any significant change with the electrode potential, which indicates that there are not new species electrochemically formed in the range of potentials considered, which include some anodic and cathodic processes as shown in the corresponding cyclic voltammograms. In this regard, SERS measurements put in evidence the time dependence of the spectra obtained at potentials above -0.50 V just after switching on the laser suggesting the formation of new species, probably dimercaptoazobenzene (4-4’-DMAB), formed by a photochemical process of the adsorbed 4-ABT.Financial support from Ministerio de Ciencia e Innovación (projects CTQ2010-16271, CTQ2009-13142, and Fondos Feder), Generalitat Valenciana (Prometeo/2009/045 and ACOMP/2011/200), and University of Alicante is greatly acknowledged

    Synthesis and Electrocatalytic Properties of H2SO4-Induced (100) Pt Nanoparticles Prepared in Water-in-Oil Microemulsion

    Get PDF
    The increasing number of applications for shape-controlled metal nanoparticles (NPs) has led to the need for easy, cheap, and scalable methodologies. We report the synthesis of (100) preferentially oriented Pt NPs, with a particle size of 9 nm, by using a water-in-oil microemulsion method. The specific surface structure of the NPs is induced by the presence of H2SO4 in the water phase of the microemulsion. Interestingly, the results reported herein show how increasing amounts of H2SO4 lead to the formation of Pt NPs containing a larger amount of (100) sites on their surface. This preferential surface orientation is confirmed electrochemically by using the so-called hydrogen adsorption/desorption process. In addition, transmission electron microscopy measurements confirm the presence of cubic-like Pt NPs. Finally, the electrocatalytic properties of the Pt NPs are evaluated towards ammonia and CO electro-oxidations, which are (100) structure-sensitive reactions.This work has been financially supported by the MCINN-FEDER (Spain) (project CTQ 2010-16271), Generalitat Valenciana (project PROMETEO/2009/045) and in part by NASA-URC Grant No. NNX10AQ17A and NSF-NSEC Center for Hierarchical Manufactur-ing Grant No. CHM-CMMI-0531171. R. M-R is grateful to the Becas Iberoamérica, Santander Universidades-España 2012 and PR-LSAMP Bridge to Doctorate Fellowship programs
    corecore