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Abstract: The use of shape-controlled metal nanoparticles has produced not only a 

clear enhancement in the electrocatalytic activity of different reactions of interest but 

also a better understanding of the effect of the surface structure on nanoscaled 

materials. However, it is well-accepted that a correct understanding of the correlations 

between shape/surface structure and electrochemical reactivity indispensably requires 

the use of clean surfaces. In this regard, and considering that most of the synthetic 

methodologies available in the literature for the preparation of these shaped metal 

nanoparticles employ capping agents, the development of effective surface cleaning 

methodologies able to remove such capping agents from the surface of the 

corresponding nanoparticles, becomes an extremely important prerequisite to 

subsequently evaluate their electrocatalytic properties for any reaction of interest. 

Consequently, in this contribution, we summarize the most relevant advances about 

surface cleaning procedures applied to different shaped metal nanoparticles for 

electrocatalytic purposes. It is worth mentioning that this work will only include 

contributions in which the surface cleanness of the samples is specifically evaluated 

using well-established electrochemical tools. 
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Introduction 

Since the first examples of the use of shape-controlled metal nanoparticles in 

Electrocatalysis, dealing with the application of cubic platinum (Pt) nanoparticles 

towards ammonia electrooxidation in alkaline solution [1 , 2], many contributions have 

been reported in this topic. Currently, the most relevant advances in this field appear 

now included in interesting reviews about the use of these shaped metal nanoparticles 

for many different electrocatalytic applications [3-12]. Interestingly, all these studies 
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clearly point out that the surface structure, that is, the particular arrangement of the 

atoms at the surface of the shaped nanoparticles is the key parameter determining 

their resulting electrocatalytic properties/reactivity as previously described with metal 

single crystal electrodes [13, 14]. In this sense, the availability of shape-controlled 

metal nanoparticles is of outstanding importance because the shape of the 

nanoparticles essentially determines their surface structure, that is, their surface atomic 

arrangement and coordination. In fact, the shape of a nanoparticle anticipates its 

preferential surface structure due to the intrinsic correlation between the shape and the 

surface structure of a nanoparticle [15, 16 ]. However, it is also worth noting that a 

perfect shape-surface structure correlation is unrealistic and consequently, even with a 

well-defined (in terms of size and shape) nanoparticle, its surface will be extremely 

complex containing not only some ordered surface domains of different dimensions but 

also a determined number of defect, corner, edge, step and kink sites, all of them 

contributing to the resulting electrocatalytic activity. 

Many options are now available in the literature for the preparation of shape-controlled 

metal nanoparticles [5, 17-20], most of them based on the chemical reduction of a 

metallic precursor in the presence of a capping agent. Although other experimental 

parameters such as electrolyte, temperature, reducing time, nature of the reducing 

agent and others may also affect, the role of the capping agent is extremely important 

because it modifies the surface energies of the nanoparticles during their nucleation 

and growth steps thus overcoming the thermodynamic limitations and allowing metal 

nanoparticles with a particular shape to be obtained. The presence of these capping 

agents at the surface of the nanoparticles, however, precludes its direct application in 

Electrocatalysis, where it is well-established that having a clean surface is a 

requirement for a correct understanding of surface structure-electrocatalytic reactivity 

relationships. Consequently, once shaped metal nanoparticles are prepared, these 

must be inevitably submitted to specific decontamination protocols to remove the 

presence, even in residual amounts, of the capping agents at the surface of the 

nanoparticles. In addition, this surface cleaning must be performed without altering the 

initial surface structure of the nanoparticles. This is, from our point of view, one of the 

most critical aspects that have to be fully satisfied for the establishment of correct 

correlations between particle shape/surface structure and electrochemical reactivity 

with these systems. With this objective in mind, this contribution describes some 

specific decontamination protocols reported in literature and successfully applied for 

shape-controlled metal nanoparticles for subsequent electrocatalytic purposes. At this 

respect, it is important to note that a “universal” cleaning method is not possible and 

the particular cleaning will basically depend on two main parameters, a) the chemical 
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nature of the capping agent and b) its interaction with the surface of the shaped 

nanoparticles this latter being determined by the nature of metal as well as by the 

structure of surface exposed. Figure 1 schematically illustrates the topic covered by the 

present work. 

 

Figure 1. Schematically representation of the topic covered in this contribution. 

Finally, it is also important to mention that some methodologies able to prepare shape-

controlled metal nanoparticles in the absence of capping agents are also available in 

the literature, including electrochemical methods [21], cathodic corrosion [22], 

surfactant-free solvothermal synthesis [23] or solid-state chemistry methods [24]. 

Electrochemical reactions for evaluating the surface cleanness 

Taking in mind that the use of clean surfaces is a fundamental requisite to properly 

study the electrochemical properties of shaped metal nanoparticles, the question of 

how to evaluate this surface cleanness obviously emerges. This question can be again 

satisfied by exploring some of the interesting options that Surface Electrochemistry of 

metal single crystals provides us. For example, the so-called hydrogen region for Pt 

and palladium (Pd) surfaces can be employed to properly evaluate the level of 

cleanness of the surface. In brief, if the different hydrogen and/or anion adsorption-

desorption states are well-defined (sharpness) and reversible (symmetry), there is a 

clear evidence of the adequate cleanness of the surface. For gold (Au) surfaces, the 

analysis of the oxide formation/reduction region can be also used to extract information 

about the surface cleanness. On the other hand, by using different underpotential 

deposition (UPD) processes, some information about the surface cleanness can be 
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also extracted. Interestingly, a more detailed analysis of these processes can also 

provide other relevant electrochemical parameters such as surface area as well as 

qualitative and quantitative information of the different surface sites present at the 

surface of the nanoparticles. In fact, these electrochemical tools have been shown to 

be extremely sensitive to analyse possible perturbations of the surface structure of the 

nanoparticles when too aggressive decontamination protocols are employed. In this 

way, it was possible to evidence that the use of UV/ozone as decontamination protocol 

[25-27] resulted in an important surface structure perturbation but without affecting 

neither the size nor the shape of the nanoparticles as deduced from TEM 

measurements [28 ]. 

For shape-controlled metal alloy nanoparticles, indisputably one of the hot topics in 

Electrocatalysis [4, 9, 11, 12, 29 , 30], the evaluation of the surface cleanness becomes 

much more complex due to the intrinsic complexity of the alloy surfaces [31-33]. In 

these systems, one should verify, using some of the previously mentioned 

electrochemical tools, the correct surface cleanness for the corresponding controlling 

metal, for instance Pt for Pt-based alloys, obviously prepared using similar 

experimental conditions and then simply assuming the effectiveness of the applied 

cleaning procedure. Without this verification, the surface cleanness of the shape-

controlled metal alloy nanoparticles cannot be warranted. 

Surface cleaning methodologies  

In the following, we will briefly describe the most relevant decontamination protocols 

found in the literature and applied to different shaped metal nanoparticles for various 

electrocatalytic purposes. 

Cubic, cuboctahedral and tetrahedral-octahedral Pt nanoparticles prepared in the 

presence of sodium polyacrylate (NaPA) were decontaminated by applying a NaOH 

cleaning [34 ]. The surface cleaning was achieved by the addition of some NaOH 

pellets to the colloidal suspension which induce the precipitation of the nanoparticles. 

After collecting and washing the nanoparticles with ultrapure water, the sample was 

ready for electrochemical measurements. The effectiveness of the cleaning was 

evidenced by the definition and reversibility of the so-called hydrogen features 

regardless of the used supporting electrolyte (H2SO4, HClO4 or NaOH). Interestingly, 

this simple decontamination was shown to be also effective with cubic Pd nanoparticles 

prepared in the presence of cetyltrimethylammonium bromide (CTAB) [35, 36] and 

cubic Pt nanoparticles prepared in the presence of tetradecyltrimethylammonium 

bromide (TTAB) [37, 38]. However, this cleaning resulted ineffective with shaped Pt 
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nanoparticles prepared with polyvinylpyrrolidone (PVP) [37, 39] which is one of the 

most usual capping agents for the preparation of shape-controlled metal nanoparticles 

[40]. To the best of our knowledge, the first example of clean shape-controlled Pt 

nanoparticles prepared with PVP was reported by Monzó et al. [41 ]. They proposed 

the use of a H2O2/H2SO4 solution to remove the PVP. They stated that the oxygen 

bubbling coming from the H2O2 decomposition was the cleaning agent, thus taking 

place a physical removal process of the PVP. With a similar concept, Levendorf et al. 

[42] obtained clean cubic and octahedral/tetrahedral Pt nanoparticles prepared with 

PVP using an adapted liquid phase UV photo-oxidation (UVPO) technique. In these 

two last cases, the voltammetric responses of the shaped Pt nanoparticles in 0.5 M 

H2SO4 were very similar to those reported with “clean” cubic and octahedral/tetrahedral 

Pt nanoparticles thus pointing out the effectiveness of their methodologies.  

Interestingly, Yang et al. [43] proposed a different procedure to remove commonly used 

capping agents, such as PVP and oleylamine/oleic acid, during the synthesis of shape-

controlled Pt nanoparticles. This method consisted in the use of a simple 

electrochemical potential cycling in which the gold substrate on which the nanoparticles 

were deposited was cycled between 0 and 1.0 V (vs RHE) in 0.5 M NaOH with a scan 

rate of 0.5 V s-1. After 100 cycles, the cleanness was evaluated by transferring the 

electrode to a second electrochemical cell containing 0.5 M H2SO4. From the obtained 

voltammetric response it was concluded that both PVP and oleylamine/oleic acid could 

be successfully removed from the surface of the nanoparticles with this electrochemical 

potential cycling methodology performed in 0.5 M NaOH solution. However, and 

despite the effectiveness of this “electrochemical cleaning procedure”, this method has 

some practical limitations, particularly for large amounts of nanoparticles. 

To overcome this limitation, Zalineeva et al. [44, 45] proposed an easy methodology to 

obtain clean shape-controlled Pd nanoparticles prepared in the presence of PVP by 

using an optimised NaOH treatment in contrast to previous unsuccessful contributions 

[38, 46]. Briefly, the PVP-colloidal suspension was first diluted with H2O and the 

precipitation of the shaped Pd nanoparticles reached by the addition of NaOH pellets 

until having a 1 M NaOH solution (this NaOH concentration is significantly higher than 

that previously used). The nanoparticles were then collected by precipitation and their 

corresponding voltammetric profile in 0.5 M H2SO4 displayed well-defined voltammetric 

features thus denoting the effectiveness of the surface cleaning. 

Neergat and co-workers reported two different alternatives for the removal of stabilizers 

and capping agents with shape-controlled Pd nanoparticles prepared in the presence 

of PVP and others additives such as Br-, Cl- and citrate ions [47, 48]. In the first 
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approach [47], cubic Pd nanoparticles were treated with tert-butylamine (TBA) during 

three days under continuous stirring after which the samples were collected by 

centrifugation and redispersed in ethanol. The sample was then electrochemically 

characterized in 0.1 M HClO4 and the results pointed out the effectiveness of the 

proposed cleaning methodology. Subsequently, in this case for various shape-

controlled Pd nanoparticles including cubic, truncated-octahedral and cubic/cubo-

octahedral nanoparticles, a NaBH4 solution was employed for the removal of the 

different additives [48]. Thus, after washing the samples with acetone and 

ethanol/hexane mixtures, the nanoparticles were dispersed in a water solution 

containing NaBH4 (60 mg of NaBH4 in 10 mL of water). The solution was then sealed, 

sonicated for 30 min and heated at 85ºC under stirring for 8 h. The nanoparticles were 

finally collected by centrifugation and electrochemically evaluated in 0.1 M HClO4. The 

reported cyclic voltammograms showed an improved surface cleanness although a full 

PVP removal was not achieved as deduced from CHN analyses, from which about a 

90% cleaning is estimated. In both decontamination procedures, the improvement in 

surface cleanness produced clear enhanced ORR activities. 

Luo et al. [49] applied a combined TBA/NaBH4 cleaning to get clean Pt-Pd nanocubes 

prepared in the presence of PVP. The removal of the PVP was carried out by 

dispersing the nanoparticles in a TBA/NaBH4 aqueous solution (NaBH4/TBA/water, 1.9 

mg / 20 mL / 5 mL) for 30 min under continuous stirring and at room temperature. After 

that, the sample was collected by centrifugation and washed with an ethanol/acetone 

mixture to remove the excess of amines. Raman and FTIR analyses suggest the 

effective removal of the PVP from the surface of the Pt-Pd nanocubes with the 

combined TBA/NaBH4 cleaning in comparison with the separately TBA and NaBH4 

treated samples. As a result, the electrocatalytic activity of the clean Pt-Pd nanocubes 

towards methanol oxidation in 0.1 M HClO4 showed an evident enhancement.  

More recently, Arán-Ais et al. [50 ] reported a new methodology to clean various 

shape-controlled Pt nanoparticles prepared using oleylamine/oleic acid as capping 

agent/solvent. The freshly prepared nanoparticles were initially washed with a 

hexane/ethanol mixture. Then, the sample was redispersed in 20 mL of methanol after 

which a pellet of NaOH was added to the solution and sonicated for 5 min. After the 

nanoparticles precipitated, the alkaline solution of methanol was removed and the 

nanoparticles washed with acetone. This treatment was repeated at least three times, 

after which the sample was washed and stored with ultrapure water. The different 

shaped Pt nanoparticles were electrochemically characterized in much detail and, 
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particularly, their voltammetric profiles in 0.5 M H2SO4 were clear evidences of the 

effective surface cleanness.  

On the other hand, for shape-controlled Au nanoparticles, it has been stated that the 

electrochemical deposition of a film of PbO2 in alkaline solution [51, 52] is very effective 

in order to remove different capping agents, including polyethylene glycol dodecyl ether 

(Brij®30), CTAB and poly(diallyldimethylammonium chloride) (PDDA)). Interestingly, the 

NaOH cleaning was shown also effective to get clean cubic and octahedral Au 

nanoparticles prepared with CTAB [53, 54] which were used to electrochemically 

oxidise different organic molecules such as methanol, ethanol, formaldehyde and 

glycerol. 

To end this contribution, Figure 2 collects some of the characteristic voltammetric 

profiles of clean shape-controlled Pt, Pd and Au nanoparticles reported in the literature. 

Each voltammogram displays distinct features associated with their corresponding 

preferential surface structure. For a more detailed analysis, we refer to Refs 34, 45, 

and 55. 

 

Figure 2. Representative voltammetric profiles of clean cubic (blue lines) and octahedral (red 

lines)  Pt (a), Pd (b)  and Au (c) nanoparticles obtained in 0.5 M H2SO4 (a, b) and 0.1 M NaOH 
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(c) at  50 mV s
-1

 (a, c) and 5 mV s
−1

 (b). Data extracted from references 34 (figure a), 45 (figure 

b) and 54 (figure c). 

Summary 

By using shape-controlled metal nanoparticles, a clear electrocatalytic enhancement on 

several electrochemical reactions of interest has been reported. However, and due to 

the fact that most of the routes available for the preparation of these shaped 

nanoparticles require capping agents, the development of effective surface cleaning 

methodologies is unavoidable before their use as electrocatalysts. In this contribution, 

we have summarized some of the optimal decontamination procedures existing in 

literature. In this way, shaped Pt, Pd and Au nanoparticles prepared using some of 

most conventional capping agents such as NaPA, PVP, CTAB, TTAB and 

oleylamine/oleic acid can be properly cleaned and adequately used for different 

electrochemical reactions of interest.  
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