21,731 research outputs found

    Simulation of anyons with tensor network algorithms

    Get PDF
    Interacting systems of anyons pose a unique challenge to condensed matter simulations due to their non-trivial exchange statistics. These systems are of great interest as they have the potential for robust universal quantum computation, but numerical tools for studying them are as yet limited. We show how existing tensor network algorithms may be adapted for use with systems of anyons, and demonstrate this process for the 1-D Multi-scale Entanglement Renormalisation Ansatz (MERA). We apply the MERA to infinite chains of interacting Fibonacci anyons, computing their scaling dimensions and local scaling operators. The scaling dimensions obtained are seen to be in agreement with conformal field theory. The techniques developed are applicable to any tensor network algorithm, and the ability to adapt these ansaetze for use on anyonic systems opens the door for numerical simulation of large systems of free and interacting anyons in one and two dimensions.Comment: Fixed typos, matches published version. 16 pages, 21 figures, 4 tables, RevTeX 4-1. For a related work, see arXiv:1006.247

    Classification of GHZ-type, W-type and GHZ-W-type multiqubit entanglements

    Get PDF
    We propose the concept of SLOCC-equivalent basis (SEB) in the multiqubit space. In particular, two special SEBs, the GHZ-type and the W-type basis are introduced. They can make up a more general family of multiqubit states, the GHZ-W-type states, which is a useful kind of entanglement for quantum teleporatation and error correction. We completely characterize the property of this type of states, and mainly classify the GHZ-type states and the W-type states in a regular way, which is related to the enumerative combinatorics. Many concrete examples are given to exhibit how our method is used for the classification of these entangled states.Comment: 16 pages, Revte

    Hydrogen column density evaluations toward Capella: consequences on the interstellar deuterium abundance

    Full text link
    The deuterium abundance evaluation in the direction of Capella has for a long time been used as a reference for the local interstellar medium (ISM) within our Galaxy. We show here that broad and weak HI components could be present on the Capella line of sight, leading to a large new additional systematic uncertainty on the N(HI) evaluation. The D/H ratio toward Capella is found to be equal to 1.67 (+/-0.3)x10^-5 with almost identical chi^2 for all the fits (this range includes only the systematic error; the 2 sigma statistical one is almost negligible in comparison). It is concluded that D/H evaluations over HI column densities below 10^19 cm^-2 (even perhaps below 10^20 cm^-2 if demonstrated by additional observations) may present larger uncertainties than previously anticipated. It is mentionned that the D/O ratio might be a better tracer for DI variations in the ISM as recently measured by the Far Ultraviolet Spectroscopic Explorer (FUSE).Comment: Accepted for publication in the Astrophysical Journal Letter

    On the energy saved by interlayer interactions in the superconducting state of cuprates

    Full text link
    A Ginzburg-Landau-like functional is proposed reproducing the main low-energy features of various possible high-Tc superconducting mechanisms involving energy savings due to interlayer interactions. The functional may be used to relate these savings to experimental quantities. Two examples are given, involving the mean-field specific heat jump at Tc and the superconducting fluctuations above Tc. Comparison with existing data suggests, e.g., that the increase of Tc due to the so-called interlayer tunneling (ILT) mechanism of interlayer kinetic-energy savings is negligible in optimally-doped Bi-2212.Comment: 12 pages, no figures. Version history: 21-aug-2003, first version (available on http://arxiv.org/abs/cond-mat/0308423v1); 15-jan-2004, update to match Europhys. Lett. publication (minor grammar changes, updates in bibliography - e.g., refs. 5 and 26

    Simulation of time evolution with the MERA

    Get PDF
    We describe an algorithm to simulate time evolution using the Multi-scale Entanglement Renormalization Ansatz (MERA) and test it by studying a critical Ising chain with periodic boundary conditions and with up to L ~ 10^6 quantum spins. The cost of a simulation, which scales as L log(L), is reduced to log(L) when the system is invariant under translations. By simulating an evolution in imaginary time, we compute the ground state of the system. The errors in the ground state energy display no evident dependence on the system size. The algorithm can be extended to lattice systems in higher spatial dimensions.Comment: final version with data improvement (precision and size), 4.1 pages, 4 figures + extra on X

    Algorithms for entanglement renormalization

    Get PDF
    We describe an iterative method to optimize the multi-scale entanglement renormalization ansatz (MERA) for the low-energy subspace of local Hamiltonians on a D-dimensional lattice. For translation invariant systems the cost of this optimization is logarithmic in the linear system size. Specialized algorithms for the treatment of infinite systems are also described. Benchmark simulation results are presented for a variety of 1D systems, namely Ising, Potts, XX and Heisenberg models. The potential to compute expected values of local observables, energy gaps and correlators is investigated.Comment: 23 pages, 28 figure

    How to escape Aharonov-Bohm cages ?

    Full text link
    We study the effect of disorder and interactions on a recently proposed magnetic field induced localization mechanism. We show that both partially destroy the extreme confinement of the excitations occuring in the pure case and give rise to unusual behavior. We also point out the role of the edge states that allows for a propagation of the electrons in these systems.Comment: 22 pages, 20 EPS figure

    Entanglement entropy in collective models

    Full text link
    We discuss the behavior of the entanglement entropy of the ground state in various collective systems. Results for general quadratic two-mode boson models are given, yielding the relation between quantum phase transitions of the system (signaled by a divergence of the entanglement entropy) and the excitation energies. Such systems naturally arise when expanding collective spin Hamiltonians at leading order via the Holstein-Primakoff mapping. In a second step, we analyze several such models (the Dicke model, the two-level BCS model, the Lieb-Mattis model and the Lipkin-Meshkov-Glick model) and investigate the properties of the entanglement entropy in the whole parameter range. We show that when the system contains gapless excitations the entanglement entropy of the ground state diverges with increasing system size. We derive and classify the scaling behaviors that can be met.Comment: 11 pages, 7 figure

    Haffner 16: A Young Moving Group in the Making

    Full text link
    The photometric properties of main sequence (MS) and pre-main sequence (PMS) stars in the young cluster Haffner 16 are examined using images recorded with the Gemini South Adaptive Optics Imager (GSAOI) and corrected for atmospheric blurring by the Gemini Multi-Conjugate Adapative Optics System (GeMS). A rich population of PMS stars is identified, and comparisons with isochrones suggest an age < 10 Myr assuming a distance modulus of 13.5 (D = 5 kpc). When compared with the solar neighborhood, Haffner 16 is roughly a factor of two deficient in objects with sub-solar masses. PMS objects in the cluster are also more uniformly distributed on the sky than bright MS stars. It is suggested that Haffner 16 is dynamically evolved, and that it is shedding protostars with sub-solar masses. Young low mass clusters like Haffner 16 are one possible source of PMS stars in the field. The cluster will probably evolve on time scales of ~ 100 - 1000 Myr into a diffuse moving group with a mass function that is very different from that which prevailed early in its life.Comment: To appear in the Publications of the Astronomical Society of the Pacifi
    • 

    corecore