80 research outputs found

    A simple, analytical, axisymmetric microburst model for downdraft estimation

    Get PDF
    A simple analytical microburst model was developed for use in estimating vertical winds from horizontal wind measurements. It is an axisymmetric, steady state model that uses shaping functions to satisfy the mass continuity equation and simulate boundary layer effects. The model is defined through four model variables: the radius and altitude of the maximum horizontal wind, a shaping function variable, and a scale factor. The model closely agrees with a high fidelity analytical model and measured data, particularily in the radial direction and at lower altitudes. At higher altitudes, the model tends to overestimate the wind magnitude relative to the measured data

    The effect of landing system coverage and path geometry on lateral position errors at the runway threshold

    Get PDF
    The results of an analytical study performed to determine the effect of the azimuth coverage of a Microwave Landing System (MLS) on the ability of an airplane, with an initial navigation position estimate error, to navigate to the runway threshold are presented. The test path chosen for this study consists of an initial straight segment leading into a 130 deg turn with a 2286 m radius and ending in a straight-in final approach segment. The test path configuration was varied by changing the MLS azimuth coverage angle and the final approach length. The aircraft was positioned with an inital offset to the left or right of the desired path along the line of intersection with the MLS azimuth coverage. A fast time computer simulation program, using a simplistic point mass model of the airplane, was used for this study. The data from this study indicates that the lateral position errors at the runway are primarily a function of the final approach length. The effect of the azimuth coverage on the lateral position errors was restricted by the turn characteristics of the horizontal steering control laws

    Description of the computations and pilot procedures for planning fuel-conservative descents with a small programmable calculator

    Get PDF
    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modeling required for the DC-10 airplane is described

    Planning fuel-conservative descents in an airline environmental using a small programmable calculator: Algorithm development and flight test results

    Get PDF
    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents

    A comparison of two position estimate algorithms that use ILS localizer and DME information. Simulation and flight test results

    Get PDF
    Simulation and flight tests were conducted to compare the accuracy of two algorithms designed to compute a position estimate with an airborne navigation computer. Both algorithms used ILS localizer and DME radio signals to compute a position difference vector to be used as an input to the navigation computer position estimate filter. The results of these tests show that the position estimate accuracy and response to artificially induced errors are improved when the position estimate is computed by an algorithm that geometrically combines DME and ILS localizer information to form a single component of error rather than by an algorithm that produces two independent components of error, one from a DMD input and the other from the ILS localizer input

    Vertical wind estimation from horizontal wind measurements

    Get PDF
    This presentation begins with a brief description of the downdraft measurement problem for airborne Doppler based systems and the importance of the downdraft in assessing the hazard posed by a microburst wind shear. This is followed by a review of research on the feasibility of using simple microburst models to compute the downdraft from horizontal wind measurements. The current methodologies for computing the vertical wind are then discussed. A summary of the results and the plan for future research are also presented

    Investigation of the influence of wind shear on the aerodynamic characteristics of aircraft using a vortex-lattice method

    Get PDF
    The objective was to investigate and characterize the aerodynamic effect of shear flow through a series of sensitivity studies of the wind velocity gradients and wing planform geometry parameters. The wind shear effect was computed using a modified vortex-lattice computer program and characterized through the formulation of wind shear aerodynamic coefficients. The magnitude of the aerodynamic effect was demonstrated by computing the resultant change in the aerodynamics of a conventional wing and tail combination on a fixed flight path through a simulated microburst. The results of the study indicate that a significant amount of the control authority of an airplane may be required to counteract the wind shear induced forces and moments in the microburst environment

    Blended-Wing-Body Low-Speed Flight Dynamics: Summary of Ground Tests and Sample Results

    Get PDF
    A series of low-speed wind tunnel tests of a Blended-Wing-Body tri-jet configuration to evaluate the low-speed static and dynamic stability and control characteristics over the full envelope of angle of attack and sideslip are summarized. These data were collected for use in simulation studies of the edge-of-the-envelope and potential out-of-control flight characteristics. Some selected results with lessons learned are presented

    Microburst vertical wind estimation from horizontal wind measurements

    Get PDF
    The vertical wind or downdraft component of a microburst-generated wind shear can significantly degrade airplane performance. Doppler radar and lidar are two sensor technologies being tested to provide flight crews with early warning of the presence of hazardous wind shear. An inherent limitation of Doppler-based sensors is the inability to measure velocities perpendicular to the line of sight, which results in an underestimate of the total wind shear hazard. One solution to the line-of-sight limitation is to use a vertical wind model to estimate the vertical component from the horizontal wind measurement. The objective of this study was to assess the ability of simple vertical wind models to improve the hazard prediction capability of an airborne Doppler sensor in a realistic microburst environment. Both simulation and flight test measurements were used to test the vertical wind models. The results indicate that in the altitude region of interest (at or below 300 m), the simple vertical wind models improved the hazard estimate. The radar simulation study showed that the magnitude of the performance improvement was altitude dependent. The altitude of maximum performance improvement occurred at about 300 m

    Vertical wind estimation from horizontal wind measurements

    Get PDF
    The objective of this study was to assess the ability of simple vertical wind models to improve the hazard prediction capability of an airborne Doppler sensor in a realistic microburst environment. The results indicate that in the altitude region of interest (at or below 300 meters), both the linear and empirical vertical wind models improved the hazard estimate. The radar simulation study showed that the magnitude of the performance improvement was altitude dependent. The altitude of maximum performance improvement occurred at about 300 meters. At the lower altitudes the percent improvement was minimized by the diminished contribution of the vertical wind. The vertical hazard estimate errors from flight tests were less than those of the radar simulation study
    corecore