446 research outputs found
Do gravitational wave observations in the lower mass gap favor a hierarchical triple origin?
Observations of compact objects in Galactic binaries have provided tentative
evidence of a dearth of masses in the so-called lower mass gap
M. Nevertheless, two such objects have been discovered in
gravitational-wave data from LIGO and Virgo. Remarkably, the estimated masses
of both secondaries in the coalescences GW190814
(M) and GW200210_092254
(M) fall near the total mass of
M of observed Galactic binary neutron star systems. The more massive
components of the two binaries also have similar masses. Here we show that a
neutron star merger origin of the lighter components in GW190814 and
GW200210_092254 is favored over (Bayes factor )
and uniform () mass distributions in the lower mass gap. We
also examine the statistical significance of the similarity between the heavier
component masses of GW190814 and GW200210_092254, and find that a model in
which the mass of GW200210_092254 is drawn from the mass posterior of GW190814
is preferred () to a model in which its mass is drawn from
the overall mass distribution of black holes detected in gravitational wave
events. This hints at a common origin of the primary masses, as well as the
secondary masses, in GW190814 and GW200210_092254.Comment: 6 pages, 2 figure
Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan
BACKGROUND: Mutant alleles of TMPRSS3 are associated with nonsyndromic recessive deafness (DFNB8/B10). TMPRSS3 encodes a predicted secreted serine protease, although the deduced amino acid sequence has no signal peptide. In this study, we searched for mutant alleles of TMPRSS3 in families from Pakistan and Newfoundland with recessive deafness co-segregating with DFNB8/B10 linked haplotypes and also more thoroughly characterized the genomic structure of TMPRSS3. METHODS: We enrolled families segregating recessive hearing loss from Pakistan and Newfoundland. Microsatellite markers flanking the TMPRSS3 locus were used for linkage analysis. DNA samples from participating individuals were sequenced for TMPRSS3. The structure of TMPRSS3 was characterized bioinformatically and experimentally by sequencing novel cDNA clones of TMPRSS3. RESULTS: We identified mutations in TMPRSS3 in four Pakistani families with recessive, nonsyndromic congenital deafness. We also identified two recessive mutations, one of which is novel, of TMPRSS3 segregating in a six-generation extended family from Newfoundland. The spectrum of TMPRSS3 mutations is reviewed in the context of a genotype-phenotype correlation. Our study also revealed a longer isoform of TMPRSS3 with a hitherto unidentified exon encoding a signal peptide, which is expressed in several tissues. CONCLUSION: Mutations of TMPRSS3 contribute to hearing loss in many communities worldwide and account for 1.8% (8 of 449) of Pakistani families segregating congenital deafness as an autosomal recessive trait. The newly identified TMPRSS3 isoform e will be helpful in the functional characterization of the full length protein
An Archival Search for Neutron-Star Mergers in Gravitational Waves and Very-High-Energy Gamma Rays
The recent discovery of electromagnetic signals in coincidence with
neutron-star mergers has solidified the importance of multimessenger campaigns
in studying the most energetic astrophysical events. Pioneering multimessenger
observatories, such as LIGO/Virgo and IceCube, record many candidate signals
below the detection significance threshold. These sub-threshold event
candidates are promising targets for multimessenger studies, as the information
provided by them may, when combined with contemporaneous gamma-ray
observations, lead to significant detections. Here we describe a new method
that uses such candidates to search for transient events using archival
very-high-energy gamma-ray data from imaging atmospheric Cherenkov telescopes
(IACTs). We demonstrate the application of this method to sub-threshold binary
neutron star (BNS) merger candidates identified in Advanced LIGO's first
observing run. We identify eight hours of archival VERITAS observations
coincident with seven BNS merger candidates and search them for TeV emission.
No gamma-ray emission is detected; we calculate upper limits on the integral
flux and compare them to a short gamma-ray burst model. We anticipate this
search method to serve as a starting point for IACT searches with future
LIGO/Virgo data releases as well as in other sub-threshold studies for
multimessenger transients, such as IceCube neutrinos. Furthermore, it can be
deployed immediately with other current-generation IACTs, and has the potential
for real-time use that places minimal burden on experimental operations.
Lastly, this method may serve as a pilot for studies with the Cherenkov
Telescope Array, which has the potential to observe even larger fields of view
in its divergent pointing mode
Genotype–Phenotype Correlation in DFNB8/10 Families with TMPRSS3 Mutations
In the present study, genotype–phenotype correlations in eight Dutch DFNB8/10 families with compound heterozygous mutations in TMPRSS3 were addressed. We compared the phenotypes of the families by focusing on the mutation data. The compound heterozygous variants in the TMPRSS3 gene in the present families included one novel variant, p.Val199Met, and four previously described pathogenic variants, p.Ala306Thr, p.Thr70fs, p.Ala138Glu, and p.Cys107Xfs. In addition, the p.Ala426Thr variant, which had previously been reported as a possible polymorphism, was found in one family. All affected family members reported progressive bilateral hearing impairment, with variable onset ages and progression rates. In general, the hearing impairment affected the high frequencies first, and sooner or later, depending on the mutation, the low frequencies started to deteriorate, which eventually resulted in a flat audiogram configuration. The ski-slope audiogram configuration is suggestive for the involvement of TMPRSS3. Our data suggest that not only the protein truncating mutation p.T70fs has a severe effect but also the amino acid substitutions p.Ala306Thr and p.Val199Met. A combination of two of these three mutations causes prelingual profound hearing impairment. However, in combination with the p.Ala426Thr or p.Ala138Glu mutations, a milder phenotype with postlingual onset of the hearing impairment is seen. Therefore, the latter mutations are likely to be less detrimental for protein function. Further studies are needed to distinguish possible phenotypic differences between different TMPRSS3 mutations. Evaluation of performance of patients with a cochlear implant indicated that this is a good treatment option for patients with TMPRSS3 mutations as satisfactory speech reception was reached after implantation
IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-Wave Transient Catalog
Using the IceCube Neutrino Observatory, we search for high-energy neutrino
emission coincident with compact binary mergers observed by the LIGO and Virgo
gravitational wave (GW) detectors during their first and second observing runs.
We present results from two searches targeting emission coincident with the sky
localization of each gravitational wave event within a 1000 second time window
centered around the reported merger time. One search uses a model-independent
unbinned maximum likelihood analysis, which uses neutrino data from IceCube to
search for point-like neutrino sources consistent with the sky localization of
GW events. The other uses the Low-Latency Algorithm for Multi-messenger
Astrophysics, which incorporates astrophysical priors through a Bayesian
framework and includes LIGO-Virgo detector characteristics to determine the
association between the GW source and the neutrinos. No significant neutrino
coincidence is seen by either search during the first two observing runs of the
LIGO-Virgo detectors. We set upper limits on the time-integrated neutrino
emission within the 1000 second window for each of the 11 GW events. These
limits range from 0.02-0.7 . We also set limits on the
total isotropic equivalent energy, , emitted in high-energy
neutrinos by each GW event. These limits range from 1.7 10 -
1.8 10 erg. We conclude with an outlook for LIGO-Virgo
observing run O3, during which both analyses are running in real time
Searches for Neutrinos from LHAASO ultra-high-energy {\gamma}-ray sources using the IceCube Neutrino Observatory
Galactic PeVatrons are Galactic sources theorized to accelerate cosmic rays
up to PeV in energy. The accelerated cosmic rays are expected to interact
hadronically with nearby ambient gas or the interstellar medium, resulting in
{\gamma}-rays and neutrinos. Recently, the Large High Altitude Air Shower
Observatory (LHAASO) identified 12 {\gamma}-ray sources with emissions above
100 TeV, making them candidates for PeV cosmic-ray accelerators (PeVatrons).
While at these high energies the Klein-Nishina effect suppresses exponentially
leptonic emission from Galactic sources, evidence for neutrino emission would
unequivocally confirm hadronic acceleration. Here, we present the results of a
search for neutrinos from these {\gamma}-ray sources and stacking searches
testing for excess neutrino emission from all 12 sources as well as their
subcatalogs of supernova remnants and pulsar wind nebulae with 11 years of
track events from the IceCube Neutrino Observatory. No significant emissions
were found. Based on the resulting limits, we place constraints on the fraction
of {\gamma}-ray flux originating from the hadronic processes in the Crab Nebula
and LHAASOJ2226+6057
GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses
We report the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGO’s and Virgo’s third observing run. The signal was recorded on April 12, 2019 at 05∶30∶44 UTC with a network signal-to-noise ratio of 19. The binary is different from observations during the first two observing runs most notably due to its asymmetric masses: a ∼30 M_⊙ black hole merged with a ∼8 M_⊙ black hole companion. The more massive black hole rotated with a dimensionless spin magnitude between 0.22 and 0.60 (90% probability). Asymmetric systems are predicted to emit gravitational waves with stronger contributions from higher multipoles, and indeed we find strong evidence for gravitational radiation beyond the leading quadrupolar order in the observed signal. A suite of tests performed on GW190412 indicates consistency with Einstein’s general theory of relativity. While the mass ratio of this system differs from all previous detections, we show that it is consistent with the population model of stellar binary black holes inferred from the first two observing runs
- …