120 research outputs found
Entropy, dimension and the Elton-Pajor Theorem
The Vapnik-Chervonenkis dimension of a set K in R^n is the maximal dimension
of the coordinate cube of a given size, which can be found in coordinate
projections of K. We show that the VC dimension of a convex body governs its
entropy. This has a number of consequences, including the optimal Elton's
theorem and a uniform central limit theorem in the real valued case
Remarks on the geometry of coordinate projections in R^n
We study geometric properties of coordinate projections. Among other results,
we show that if a body K in R^n has an "almost extremal" volume ratio, then it
has a projection of proportional dimension which is close to the cube. We
compare type 2 and infratype 2 constant of a Banach space. This follows from a
comparison lemma for Rademacher and Gaussian averages. We also establish a
sharp estimate on the shattering dimension of the convex hull of a class of
functions in terms of the shattering dimension of the class itself.Comment: Israel Journal of Mathematics, to appea
Small ball probability for the condition number of random matrices
Let be an random matrix with i.i.d. entries of zero mean,
unit variance and a bounded subgaussian moment. We show that the condition
number satisfies the small ball probability estimate
where may only depend on the subgaussian moment.
Although the estimate can be obtained as a combination of known results and
techniques, it was not noticed in the literature before. As a key step of the
proof, we apply estimates for the singular values of , obtained (under some additional assumptions) by Nguyen.Comment: Some changes according to the Referee's comment
Algorithmic linear dimension reduction in the l_1 norm for sparse vectors
This paper develops a new method for recovering m-sparse signals that is
simultaneously uniform and quick. We present a reconstruction algorithm whose
run time, O(m log^2(m) log^2(d)), is sublinear in the length d of the signal.
The reconstruction error is within a logarithmic factor (in m) of the optimal
m-term approximation error in l_1. In particular, the algorithm recovers
m-sparse signals perfectly and noisy signals are recovered with polylogarithmic
distortion. Our algorithm makes O(m log^2 (d)) measurements, which is within a
logarithmic factor of optimal. We also present a small-space implementation of
the algorithm. These sketching techniques and the corresponding reconstruction
algorithms provide an algorithmic dimension reduction in the l_1 norm. In
particular, vectors of support m in dimension d can be linearly embedded into
O(m log^2 d) dimensions with polylogarithmic distortion. We can reconstruct a
vector from its low-dimensional sketch in time O(m log^2(m) log^2(d)).
Furthermore, this reconstruction is stable and robust under small
perturbations
Dimension-adaptive bounds on compressive FLD Classification
Efficient dimensionality reduction by random projections (RP) gains popularity, hence the learning guarantees achievable in RP spaces are of great interest. In finite dimensional setting, it has been shown for the compressive Fisher Linear Discriminant (FLD) classifier that forgood generalisation the required target dimension grows only as the log of the number of classes and is not adversely affected by the number of projected data points. However these bounds depend on the dimensionality d of the original data space. In this paper we give further guarantees that remove d from the bounds under certain conditions of regularity on the data density structure. In particular, if the data density does not fill the ambient space then the error of compressive FLD is independent of the ambient dimension and depends only on a notion of ‘intrinsic dimension'
Greedy Signal Recovery Review
The two major approaches to sparse recovery are L1-minimization and greedy
methods. Recently, Needell and Vershynin developed Regularized Orthogonal
Matching Pursuit (ROMP) that has bridged the gap between these two approaches.
ROMP is the first stable greedy algorithm providing uniform guarantees.
Even more recently, Needell and Tropp developed the stable greedy algorithm
Compressive Sampling Matching Pursuit (CoSaMP). CoSaMP provides uniform
guarantees and improves upon the stability bounds and RIC requirements of ROMP.
CoSaMP offers rigorous bounds on computational cost and storage. In many cases,
the running time is just O(NlogN), where N is the ambient dimension of the
signal. This review summarizes these major advances
Eigenvalue variance bounds for Wigner and covariance random matrices
This work is concerned with finite range bounds on the variance of individual
eigenvalues of Wigner random matrices, in the bulk and at the edge of the
spectrum, as well as for some intermediate eigenvalues. Relying on the GUE
example, which needs to be investigated first, the main bounds are extended to
families of Hermitian Wigner matrices by means of the Tao and Vu Four Moment
Theorem and recent localization results by Erd\"os, Yau and Yin. The case of
real Wigner matrices is obtained from interlacing formulas. As an application,
bounds on the expected 2-Wasserstein distance between the empirical spectral
measure and the semicircle law are derived. Similar results are available for
random covariance matrices
- …