275 research outputs found

    Contributing factors for preoperative caregiver anxiety at Steve Biko Academic Hospital

    Get PDF
    https://drive.google.com/file/d/1Id5X8lK3VUN3s-p6LCJvXV8BLT5iiQ_P/view?usp=sharinghttps://drive.google.com/drive/folders/1nELDECp29zO-u72nACcqrdmRjUHqidUZ?usp=sharinghttps://drive.google.com/drive/folders/1qK5XOOdJhIu3ZjY0FakMISTYALx2W-_L?usp=sharin

    Vapor nanobubble is the more reliable photothermal mechanism for inducing endosomal escape of siRNA without disturbing cell homeostasis

    Get PDF
    Strategies for controlled delivery of therapeutic siRNA into living cells are in high demand as endosomal escape remains the most prominent bottleneck at the intracellular level. Photothermal properties of gold nanoparticles (AuNP) can be used to overcome the endosomal membrane barrier upon laser irradiation by two mechanisms: endosomal rupture by mechanical energy from water vapor nanobubbles (VNBs), or permeabilization of the endosomal membrane by heat diffusion. Here we evaluated how both mechanisms influence cargo release, transfection efficiency, acute cytotoxicity and cell homeostasis. Using a siRNA/AuNP drug delivery system we found that the in vitro release of siRNA from the AuNP carrier occurs equally efficiently by VNB formation or heat generation. Heat-mediated endosomal escape happened more efficiently in cells that had more particles per endosome, resulting in variable siRNA-induced downregulation (20-50%). VNB-mediated endosomal escape did not dependent on the number of AuNP per endosome, yielding high downregulations (50-60%) independent of the cell type. Effects on cell homeostasis by whole transcriptome analysis, showed a quick recover after 24 h or 48 h for either of both photothermal mechanisms. We conclude that VNBs are more consistent to induce efficient endosomal escape and gene silencing independent of the cell type without long lasting effects on cell homeostasis

    Integrating healthcare data for enhanced citizen-centred care and analytics

    Get PDF
    This research is funded by the EU H2020 project SERUMS: Securing Medical Data in Smart Patient-Centric Healthcare Systems (grant code 826278).The potential of healthcare systems worldwide is expanding as new medical devices and data sources are regularly presented to healthcare providers which could be used to personalise, improve and revise treatments further. However, there is presently a large gap between the data collected, the systems that store the data, and any ability to perform big data analytics to combinations of such data. This paper suggests a novel approach to integrate data from multiple sources and formats, by providing a uniform structure to the data in a healthcare data lake with multiple zones reflecting how refined the data is: from raw to curated when ready to be consumed or used for analysis. The integration further requires solutions that can be proven to be secure, such as patient-centric data sharing agreements (smart contracts) on a blockchain, and novel privacy-preserving methods for extracting metadata from data sources, originally derived from partially-structured or from completely unstructured data. Work presented here is being developed as part of an EU project with the ultimate aim to develop solutions for integrating healthcare data for enhanced citizen-centred care and analytics across Europe.Publisher PD

    Research on crude protein and digestibility of Arnica montana L. using conventional NIR spectrometry and hyperspectral imaging NIR

    Full text link
    peer reviewedaudience: researcher, professional, student, popularizationArnica montana L. (AM) is considered a medicinal plant, used as hay in feed ration. The aim of this study is to assess the prediction of protein content and in vitro organic matter digestibility value in grass mixtures containing Arnica montana L., and in a second step to check if these values have a positive or negative influence in the mixtures. Crude protein has been selected because it is one of the most important quality parameters of forages as nutritional element used in animal feeding. The protein is required on a daily basis for maintenance, lactation, growth and reproduction, but is important for agriculture too, because a high content of protein makes it an important source of feed. The digestibility is also important, because it refers to the extent to which a feedstuff is absorbed in the animal body as it passes through an animal’s digestive tract. In this study, the Weende system (the Kjeldahl method) for the protein content, together with the enzymatic technique for digestibility, was applied and used in combination with non-destructive methods, like those based on the Near Infrared Spectroscopy (NIRS) or the Near Infrared Hyperspectral Imaging. Based on NIR imaging system data, the PLS-DA was used to discriminate between the classes with AM and classes without AM, as well as to build a model that could be used to predict the composition of mixtures. More than 99% correct prediction for AM was obtained. The crude protein content of the hay determined by classical method decrease from the type of meadow Agrostis capillaris L. - Festuca rubra L. (15.22%) until to the pure sample of Arnica montana L. (11.19%); however, the digestibility was highest in the pure sample of Arnica montana L. (84.13%) and lowest in samples from the type of meadow Agrostis capillaris L. - Festuca rubra L. (57.18%) or in samples with the participation of Arnica montana L. This study should lead to a more important point, which is to verify whether the medicinal properties of Arnica montana L. can be transferred or not to milk production through the dairy cow feed.POSDRU/6/1.5/S/20 (PhD Program

    Reversion of the immunological eclipse and therapeutic vaccination against cancer in an experimental model

    Get PDF
    Aunque existen vacunas para prevenir la aparición de tumores en animales de experimentación, la mayoría de los intentos por aplicar aquellas vacunas con fines terapéuticos contra tumores establecidos no han sido exitosos. Para comprender la naturaleza de esta refractariedad, estudiamos un tumor de ratón fuertemente inmunogénico inducido por el carcinógeno químico metilcolantreno. En nuestro modelo, el inicio de esta refractariedad coincidió con el comienzo de un estado de inmunosupresión conocido como “eclipse inmunológico” caracterizado por una pérdida o bloqueo de la respuesta inmune antitumoral después que el tumor ha superado cierto tamaño crítico. Este eclipse inmunológico fue acompañado por un proceso de inflamación sistémica en el organismo. El tratamiento de los ratones portadores de tumor con una única dosis del corticoide sintético dexametasona (DX) redujo los parámetros de inflamación sistémica e indujo la reversión del eclipse. Esta reversión no fue por sí misma curativa pero permitió que un tratamiento inmunológico basado en células dendríticas estimuladas con antígenos tumorales, que por sí solo era absolutamente ineficaz, pudiera ejercer un significativo efecto inhibidor sobre un tumor en crecimiento. El esquema de dos pasos que compren-de, primero, un tratamiento antiinflamatorio para revertir el eclipse y segundo, una estrategia de vacunación basada en células dendríticas destinada a estimular la respuesta inmune antitumoral, podría servir, eventual-mente, como un modelo de inmunoterapia contra tumores en animales y seres humanosAlthough animals can be prophylactically immunized against the growth of tumor implants, most of the attempts to use immunotherapy to cause the regression of animal and human tumors once they become established have been unsuccessful. To understand the nature of this refractoriness we have studied a methylcholanthrene-induced and strongly immunogenic murine fibrosarcoma. In our model, the onset of this refractoriness was associated with the beginning of an immunosuppressive state known as "immunological eclipse" characterized by a loss of the antitumor immune response when tumor grows beyond a critical size. This immunological eclipse was accompanied by the emergence of a systemic inflammatory condition. Treatment of tumor-bearing mice with a single dose of a synthetic corticosteroid, dexamethasone (DX), reduced significantly all parameters of systemic inflammation and simultaneously reversed the immunological eclipse. The reversion of the eclipse upon DX treatment was not curative itself, but allowed an immunological therapy based in dendritic cells pulsed with tumor antigens, which was itself absolutely ineffective, to exert a significant inhibitory effect against an established growing tumor. The two-step schedule using an anti-inflammatory treatment to reverse the immunological eclipse plus a dendritic cell-based vaccination strategy aimed to stimulate the anti-tumor immune response, could serve eventually as a model of immunotherapy against animal and human tumors.Fil: Chiarella, Paula. Academia Nacional de Medicina de Buenos Aires. Instituto de Investigaciones Hematológicas "Mariano R. Castex"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vulcano, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Academia Nacional de Medicina de Buenos Aires. Instituto de Investigaciones Hematológicas "Mariano R. Castex"; ArgentinaFil: Laborde, Evangelina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina. Academia Nacional de Medicina de Buenos Aires. Instituto de Investigaciones Hematológicas "Mariano R. Castex"; ArgentinaFil: Vermeulen, Elba Monica. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina. Academia Nacional de Medicina de Buenos Aires. Instituto de Investigaciones Hematológicas "Mariano R. Castex"; ArgentinaFil: Bruzzo Iraola, Juan. Academia Nacional de Medicina de Buenos Aires. Instituto de Investigaciones Hematológicas "Mariano R. Castex"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Rearte, María Bárbara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina. Academia Nacional de Medicina de Buenos Aires. Instituto de Investigaciones Hematológicas "Mariano R. Castex"; ArgentinaFil: Bustuoabad, Oscar David. Academia Nacional de Medicina de Buenos Aires. Instituto de Investigaciones Hematológicas "Mariano R. Castex"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Ruggiero, Raul Alejandro. Academia Nacional de Medicina de Buenos Aires. Instituto de Investigaciones Hematológicas "Mariano R. Castex"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentin

    Photothermally triggered endosomal escape and its influence on transfection efficiency of gold-functionalized JetPEI/pDNA nanoparticles

    Get PDF
    Plasmonic nanoparticles for drug delivery have attracted increasing interest over the last few years. Their localized surface plasmon resonance causes photothermal effects on laser irradiation, which allows for delivering drugs in a spatio-temporally controlled manner. Here, we explore the use of gold nanoparticles (AuNP) as carriers for pDNA in combination with pulsed laser irradiation to induce endosomal escape, which is currently considered to be one of the major bottlenecks in macromolecular drug delivery on the intracellular level. In particular, we evaluate nanocomplexes composed of JetPEI (polyethylenimine)pDNA and 10 nm AuNP, which do not exhibit endosomal escape by themselves. After incubating HeLa cells with these complexes, we evaluated endosomal escape and transfection efficiency using low- and high-energy laser pulses. At low laser energy heat is produced by the nanocomplexes, while, at higher laser energy, explosive vapour nanobubbles (VNB) are formed. We investigated the ability of heat transfer and VNB formation to induce endosomal escape and we examine the integrity of pDNA cargo after inducing both photothermal effects. We conclude that JetPEI/pDNA/AuNP complexes are unable to induce meaningful transfection efficiencies because laser treatment causes either dysfunctionality of the cargo when VNB are formed or forms too small pores in the endosomal membrane to allow pDNA to escape in case of heating. We conclude that laser-induced VNB is the most suitable to induce effective pDNA endosomal escape, but a different nanocomplex structure will be required to keep the pDNA intact

    Flagellin delays spontaneous human neutrophil apoptosis

    Get PDF
    Neutrophils are short-lived cells that rapidly undergo apoptosis. However, their survival can be regulated by signals from the environment. Flagellin, the primary component of the bacterial flagella, is known to induce neutrophil activation. In this study we examined the ability of flagellin to modulate neutrophil apoptosis. Neutrophils cultured for 12 and 24 h in the presence of flagellin from Salmonella thyphimurim at concentrations found in pathological situations underwent a marked prevention of apoptosis. In contrast, Helicobacter pylori flagellin did not affect neutrophil survival, suggesting that Salmonella flagellin exerts the antiapoptotic effect by interacting with TLR5. The delaying in apoptosis mediated by Salmonella flagellin was coupled to higher expression levels of the antiapoptotic protein Mcl-1 and lower levels of activated caspase-3. Analysis of the signaling pathways indicated that Salmonella flagellin induced the activation of the p38 and ERK1/2 MAPK pathways as well as the PI3K/Akt pathway. Furthermore, it also stimulated IBα degradation and the phosphorylation of the p65 subunit, suggesting that Salmonella flagellin also triggers NF-B activation. Moreover, the pharmacological inhibition of ERK1/2 pathway and NF-B activation partially prevented the antiapoptotic effects exerted by flagellin. Finally, the apoptotic delaying effect exerted by flagellin was also evidenced when neutrophils were cultured with whole heat-killed S. thyphimurim. Both a wild-type and an aflagellate mutant S. thyphimurim strain promoted neutrophil survival; however, when cultured in low bacteria/neutrophil ratios, the flagellate bacteria showed a higher capacity to inhibit neutrophil apoptosis, although both strains showed a similar ability to induce neutrophil activation. Taken together, our results indicate that flagellin delays neutrophil apoptosis by a mechanism partially dependent on the activation of ERK1/2 MAPK and NF-B. The ability of flagellin to delay neutrophil apoptosis could contribute to perpetuate the inflammation during infections with flagellated bacteria.Facultad de Ciencias Exacta

    Targeting Myeloid-Derived Suppressor Cells to Enhance a Trans-Sialidase-Based Vaccine Against Trypanosoma cruzi

    Get PDF
    Trypanosoma cruzi (T. cruzi) is a hemoflagellate protozoan parasite that causes Chagas disease, a neglected tropical disease that affects more than 6 million people around the world, mostly in Latin America. Despite intensive research, there is no vaccine available; therefore, new approaches are needed to further improve vaccine efficacy. It is well established that experimental T. cruzi infection induces a marked immunosuppressed state, which includes notably increases of CD11b+ GR-1+ myeloid-derived suppressor cells (MDSCs) in the spleen, liver and heart of infected mice. We previously showed that a trans-sialidase based vaccine (TSf-ISPA) is able to confer protection against a virulent T. cruzi strain, stimulating the effector immune response and decreasing CD11b+ GR-1+ splenocytes significantly. Here, we show that even in the immunological context elicited by the TSf-ISPA vaccine, the remaining MDSCs are still able to influence several immune populations. Depletion of MDSCs with 5 fluorouracil (5FU) at day 15 post-infection notably reshaped the immune response, as evidenced by flow cytometry of spleen cells obtained from mice after 21 days post-infection. After infection, TSf-ISPA-vaccinated and 5FU-treated mice showed a marked increase of the CD8 response, which included an increased expression of CD107a and CD44 markers in CD8+ cultured splenocytes. In addition, vaccinated and MDSC depleted mice showed an increase in the percentage and number of CD4+ Foxp3+ regulatory T cells (Tregs) as well as in the expression of Foxp3+ in CD4+ splenocytes. Furthermore, depletion of MDSCs also caused changes in the percentage and number of CD11chigh CD8α+ dendritic cells as well as in activation/maturation markers such as CD80, CD40 and MHCII. Thus, the obtained results suggest that MDSCs not only play a role suppressing the effector response during T. cruzi infection, but also strongly modulate the immune response in vaccinated mice, even when the vaccine formulation has a significant protective capacity. Although MDSC depletion at day 15 post-infection did not ameliorated survival or parasitemia levels, depletion of MDSCs during the first week of infection caused a beneficial trend in parasitemia and mice survival of vaccinated mice, supporting the possibility to target MDSCs from different approaches to enhance vaccine efficacy. Finally, since we previously showed that TSf-ISPA immunization causes a slight but significant increase of CD11b+ GR-1+ splenocytes, here we also targeted those cells at the stage of immunization, prior to T. cruzi challenge. Notably, 5FU administration before each dose of TSf-ISPA vaccine was able to significantly ameliorate survival and decrease parasitemia levels of TSf-ISPA-vaccinated and infected mice. Overall, this work supports that targeting MDSCs may be a valuable tool during vaccine design against T. cruzi, and likely for other pathologies that are characterized by the subversion of the immune system.Fil: Gamba, Juan Cruz. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Tecnología Inmunológica; ArgentinaFil: Roldán, Carolina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Tecnología Inmunológica; ArgentinaFil: Prochetto, Estefanía Soledad. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Tecnología Inmunológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Lupi, Giuliana Antonella. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Tecnología Inmunológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Bontempi, Iván. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Tecnología Inmunológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ciencias Médicas; ArgentinaFil: Poncini, Carolina Verónica. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología. Cátedra de Microbiología, Parasitología e Inmunología; ArgentinaFil: Vermeulen, Mónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Perez, Ana Rosasanta fe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: Marcipar, Iván Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Tecnología Inmunológica; ArgentinaFil: Cabrera, Gabriel Gustavo. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Tecnología Inmunológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentin

    A systematic comparison of linear regression-based statistical methods to assess exposome-health associations

    No full text
    BACKGROUND: The exposome constitutes a promising framework to better understand the effect of environmental exposures on health by explicitly considering multiple testing and avoiding selective reporting. However, exposome studies are challenged by the simultaneous consideration of many correlated exposures. OBJECTIVES: We compared the performances of linear regression-based statistical methods in assessing exposome-health associations. METHODS: In a simulation study, we generated 237 exposure covariates with a realistic correlation structure, and a health outcome linearly related to 0 to 25 of these covariates. Statistical methods were compared primarily in terms of false discovery proportion (FDP) and sensitivity. RESULTS: On average over all simulation settings, the elastic net and sparse partial least-squares regression showed a sensitivity of 76% and a FDP of 44%; Graphical Unit Evolutionary Stochastic Search (GUESS) and the deletion/substitution/addition (DSA) algorithm a sensitivity of 80% and a FDP of 33%. The environment-wide association study (EWAS) underperformed these methods in terms of FDP (average FDP, 86%), despite a higher sensitivity. Performances decreased considerably when assuming an exposome exposure matrix with high levels of correlation between covariates. CONCLUSIONS: Correlation between exposures is a challenge for exposome research, and the statistical methods investigated in this study are limited in their ability to efficiently differentiate true predictors from correlated covariates in a realistic exposome context. While GUESS and DSA provided a marginally better balance between sensitivity and FDP, they did not outperform the other multivariate methods across all scenarios and properties examined, and computational complexity and flexibility should also be considered when choosing between these methods
    corecore