202 research outputs found

    The effects of thymoquinone on pancreatic cancer: Evidence from preclinical studies

    Get PDF
    Thymoquinone (TQ) is a secondary metabolite found in abundance in very few plant species including Nigella sativa L., Monarda fistulosa L., Thymus vulgaris L. and Satureja montana L. Preclinical pharmacological studies have shown that TQ has many biological activities, such as anti-inflammatory, antioxidant and anticancer. Both in vivo and in vitro experiments have shown that TQ acts as an antitumor agent by altering cell cycle progression, inhibiting cell proliferation, stimulating apoptosis, inhibiting angiogenesis, reducing metastasis and affecting autophagy. In this comprehensive study, the evidence on the pharmacological potential of TQ on pancreatic cancer is reviewed. The positive results of preclinical studies support the view that TQ can be considered as an additional therapeutic agent against pancreatic cancer. The possibilities of success for this compound in human medicine should be further explored through clinical trials. © 2022 The Author

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter

    Get PDF
    An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA). The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft (RPA) carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} % respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is unchanged with respect to v2. 39 pages, 15 figures, 2 table

    Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    Get PDF
    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 8080^\circ and energies in excess of 4 EeV (4×10184 \times 10^{18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding pp-values obtained after accounting for searches blindly performed at several angular scales, are 1.3×1051.3 \times 10^{-5} in the case of the angular power spectrum, and 2.5×1032.5 \times 10^{-3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Simulating the performance of the Southern Wide-view Gamma-ray Observatory

    Get PDF
    The Southern Wide-view Gamma-ray Observatory (SWGO) will be a next-generation gamma-ray observatory using a large array of particle detectors at a high elevation site in South America. This project is currently in a three years R&D phase in which the design will be optimised for cost and performance. Therefore it is crucial to efficiently evaluate the impact of different design options on the scientific objectives of the observatory. In this contribution, we will introduce the strategy and the simulation framework in which this evaluation takes place

    Study of water Cherenkov detector designs for the SWGO experiment

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) is a next-generation ground-based gamma-ray detector under development to reach a full sky coverage together with the current HAWC and LHAASO experiments in the northern hemisphere. It will complement the observation of transient and variable multi-wavelength and multi-messenger phenomena, offering moreover the possibility to access the Galactic Centre. One of the possible SWGO configurations consists of an array of water Cherenkov tanks, with a high fill-factor inner array and a low-density outer array, covering an overall area of one order of magnitude larger than HAWC. To reach a high detection efficiency and discrimination capability between gamma-ray and hadronic air showers, various tank designs were studied. Double-layer tanks with several sizes, shapes and number of photomultiplier tubes have been considered. Single-particle simulations have been performed to study the tank response, using muons, electrons, and gamma-rays with energies typical of extensive air showers particles, entering the tanks with zenith angles from 0 to 60 degrees. The tank response was evaluated considering the particle detection efficiency, the number of photoelectrons produced by the photomultiplier tubes, and the time resolution of the measurement of the first photon. The study allowed to compare the performance of tanks with circular and square base, to understand which design optimizes the performance of the array. The method used in the study and the results will be discussed in this paper

    The Southern Wide-field Gamma-ray Observatory reach for Primordial Black Hole evaporation

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) is a proposed ground-based gamma-ray detector that will be located in the Southern Hemisphere and is currently in its design phase. In this contribution, we will outline the prospects for Galactic science with this Observatory. Particular focus will be given to the detectability of extended sources, such as gamma-ray halos around pulsars; optimisation of the angular resolution to mitigate source confusion between known TeV sources; and studies of the energy resolution and sensitivity required to study the spectral features of PeVatrons at the highest energies. Such a facility will ideally complement contemporaneous observatories in studies of high energy astrophysical processes in our Galaxy

    Galactic Science with the Southern Wide-field Gamma-ray Observatory

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) is a proposed ground-based gamma-ray detector that will be located in the Southern Hemisphere and is currently in its design phase. In this contribution, we will outline the prospects for Galactic science with this Observatory. Particular focus will be given to the detectability of extended sources, such as gamma-ray halos around pulsars; optimisation of the angular resolution to mitigate source confusion between known TeV sources; and studies of the energy resolution and sensitivity required to study the spectral features of PeVatrons at the highest energies. Such a facility will ideally complement contemporaneous observatories in studies of high energy astrophysical processes in our Galaxy

    Monitoring Gamma-Ray Burst VHE emission with the Southern Wide-field-of-view Gamma-ray Observatory

    Get PDF
    It has been established that Gamma-Ray Bursts (GRB) can produce Very High Energy radiation (E > 100 GeV), opening a new window on the investigation of particle acceleration and radiation properties in the most energetic domain. We expect that next-generation instruments, such as the Cherenkov Telescope Array (CTA), will mark a huge improvement in their observation. However, constraints on the target visibility and the limited duty cycle of Imaging Atmospheric Cherenkov Telescopes (IACT) reduce their ability to react promptly to transient events and to characterise their general properties. Here we show that an instrument based on the Extensive Air Shower (EAS) array concept, proposed by the Southern Wide Field-of-view Gamma-ray Observatory (SWGO) Collaboration, has promising possibilities to detect and track VHE emission from GRBs. Observations made by the Fermi Large Area Telescope (Fermi-LAT) identified some events with a distinct spectral component, extending above 1 GeV or even 10 GeV, which can represent a substantial fraction of the emitted energy and also arise in early stages of the process. Using models based on these properties, we estimate the possibilities that a wide field of view and large effective area ground-based monitoring facility has to probe VHE emission from GRBs. We show that the ability to monitor VHE transients with a nearly continuous scanning of the sky grants an opportunity to access simultaneous electromagnetic counterparts to Multi-Messenger triggers up to cosmological scales, in a way that is not available to IACTs
    corecore