11,125 research outputs found
Dynamics of zonal flow-like structures in the edge of the TJ-II stellarator
The dynamics of fluctuating electric field structures in the edge of the
TJ-II stellarator, that display zonal flow-like traits, is studied. These
structures have been shown to be global and affect particle transport
dynamically [J.A. Alonso et al., Nucl. Fus. 52 063010 (2012)]. In this article
we discuss possible drive (Reynolds stress) and damping (Neoclassical
viscosity, geodesic transfer) mechanisms for the associated ExB velocity. We
show that: (a) while the observed turbulence-driven forces can provide the
necessary perpendicular acceleration, a causal relation could not be firmly
established, possibly because of the locality of the Reynolds stress
measurements, (b) the calculated neoclassical viscosity and damping times are
comparable to the observed zonal flow relaxation times, and (c) although an
accompanying density modulation is observed to be associated to the zonal flow,
it is not consistent with the excitation of pressure side-bands, like those
present in geodesic acoustic oscillations, caused by the compression of the ExB
flow field
Estudio comparativo de la reacción álcali-sílice (RAS) en áridos graníticos
The reaction between certain reactive components of aggregates (like opal and metaestable silica) and concrete pore solution is well documented. Nevertheless, in this study it has been shown that some aggregates, like granite, could develop a rapid or slow alkali-silica reaction (ASR) depending on the deleterious component involved.
Mortar bars were cast with two granitic aggregates extracted from concrete cores drilled in two Spanish Dams affected by ASR, being classified as granitic rocks. The main difference between them is the reactive component: microcrystalline quartz in one case and strained and microcracked quartz in the other case.
A petrographic examination was carried out in the mortar bars. Thin sections were cut and the alkalisilica gel was stained for an easier detection. Then, the thin sections were examinated with a stereomicroscope comparing the differences in the progress of the ASR for both aggregates.
It can be concluded that the main mechanism of formation and storage of gel is associated to the micro-cracks instead of the subgrain boundaries.La reacción entre los componentes de la fase intersticial del hormigón y áridos con minerales como el ópalo o la sílice metaestable, se encuentra bien documentada. Sin embargo, en este estudio, se ha detectado que dentro de un mismo tipo de roca, como es el granito, puede haber diferencias en el tipo de reacción (lenta o rápida) dependiendo del componente reactivo que aparezca en la misma.
Se han fabricado barras de mortero con los áridos extraídos de dos presas españolas afectadas por la reacción álcali-sílice. Estos áridos son rocas graníticas y la diferencia entre ambos reside en que una de las muestras contiene cuarzo microcristalino como componente reactivo y, la otra, cuarzo deformado.
Mediante el estudio petrográfico de barras de mortero y el teñido del gel álcali-sílice se ha podido observar la evolución y progreso de la reacción para cada uno de los componentes reactivos.
La principal conclusión que se puede extraer de este estudio es que la formación y almacenamiento del gel se asocia a microfracturas en lugar de a límites de grano
Density-functional study of defects in two-dimensional circular nematic nanocavities
We use density--functional theory to study the structure of two-dimensional
defects inside a circular nematic nanocavity. The density, nematic order
parameter, and director fields, as well as the defect core energy and core
radius, are obtained in a thermodynamically consistent way for defects with
topological charge (with radial and tangential symmetries) and .
An independent calculation of the fluid elastic constants, within the same
theory, allows us to connect with the local free--energy density predicted by
elastic theory, which in turn provides a criterion to define a defect core
boundary and a defect core free energy for the two types of defects. The radial
and tangential defects turn out to have very different properties, a feature
that a previous Maier--Saupe theory could not account for due to the simplified
nature of the interactions --which caused all elastic constants to be equal. In
the case with two defects in the cavity, the elastic r\'egime cannot
be reached due to the small radii of the cavities considered, but some trends
can already be obtained.Comment: 9 figures. Accepted for publication in liquid crystal
Evidence for Strain-Induced Local Conductance Modulations in Single-Layer Graphene on SiO_2
Graphene has emerged as an electronic material that is promising for device applications and for studying two-dimensional electron gases with relativistic dispersion near two Dirac points. Nonetheless, deviations from Dirac-like spectroscopy have been widely reported with varying interpretations. Here we show evidence for strain-induced spatial modulations in the local conductance of single-layer graphene on SiO_2 substrates from scanning tunneling microscopic (STM) studies. We find that strained graphene exhibits parabolic, U-shaped conductance vs bias voltage spectra rather than the V-shaped spectra expected for Dirac fermions, whereas V-shaped spectra are recovered in regions of relaxed graphene. Strain maps derived from the STM studies further reveal direct correlation with the local tunneling conductance. These results are attributed to a strain-induced frequency increase in the out-of-plane phonon mode that mediates the low-energy inelastic charge tunneling into graphene
Is there Ornstein-Zernike equation in the canonical ensemble?
A general density-functional formalism using an extended variable-space is
presented for classical fluids in the canonical ensemble (CE). An exact
equation is derived that plays the role of the Ornstein-Zernike (OZ) equation
in the grand canonical ensemble (GCE). When applied to the ideal gas we obtain
the exact result for the total correlation function h_N. For a homogeneous
fluid with N particles the new equation only differs from OZ by 1/N and it
allows to obtain an approximate expression for h_N in terms of its GCE
counterpart that agrees with the expansion of h_N in powers of 1/N.Comment: 5 pages, RevTeX. Submitted to Phys. Rev. Let
Oscillatory relaxation of zonal flows in a multi-species stellarator plasma
The low frequency oscillatory relaxation of zonal potential perturbations is
studied numerically in the TJ-II stellarator (where it was experimentally
detected for the first time). It is studied in full global gyrokinetic
simulations of multi-species plasmas. The oscillation frequency obtained is
compared with predictions based on single-species simulations using simplified
analytical relations. It is shown that the frequency of this oscillation for a
multi-species plasma can be accurately obtained from single-species
calculations using extrapolation formulas. The damping of the oscillation and
the influence of the different inter-species collisions is studied in detail.
It is concluded that taking into account multiple kinetic ions and electrons
with impurity concentrations realistic for TJ-II plasmas allows to account for
the values of frequency and damping rate in zonal flows relaxations observed
experimentally.Comment: 11 figures, 22 page
Polynomial Cointegration among Stationary Processes with Long Memory
n this paper we consider polynomial cointegrating relationships among
stationary processes with long range dependence. We express the regression
functions in terms of Hermite polynomials and we consider a form of spectral
regression around frequency zero. For these estimates, we establish consistency
by means of a more general result on continuously averaged estimates of the
spectral density matrix at frequency zeroComment: 25 pages, 7 figures. Submitted in August 200
- …