18 research outputs found
Instrument Concept for the Proposed DESDynI SAR instrument
The proposed DESDynI (Solid Earth Deformation, Ecosystems Structure and Dynamics of Ice) SAR (synthetic aperture radar) Instrument would expand the trade-space of radar instrument concepts and push the boundaries of high-level integration of digital and RF subsystems in order to achieve very precise assessments of system's behavior; DESDynI mission concept would provide continuous science measurements that would greatly enhance understanding of geophysical and anthropological effects in three science disciplines; Trades in instrument architecture implementations and partnership discussions are producing a set of options for science community and NASA to evaluate and consider implementing late in the decade
A Compact Two-Stage 120 W GaN High Power Amplifier for SweepSAR Radar Systems
This work presents the design and measured results of a fully integrated switched power two-stage GaN HEMT high-power amplifier (HPA) achieving 60% power-added efficiency at over 120Woutput power. This high-efficiency GaN HEMT HPA is an enabling technology for L-band SweepSAR interferometric instruments that enable frequent repeat intervals and high-resolution imagery. The L-band HPA was designed using space-qualified state-of-the-art GaN HEMT technology. The amplifier exhibits over 34 dB of power gain at 51 dBm of output power across an 80 MHz bandwidth. The HPA is divided into two stages, an 8 W driver stage and 120 W output stage. The amplifier is designed for pulsed operation, with a high-speed DC drain switch operating at the pulsed-repetition interval and settles within 200 ns. In addition to the electrical design, a thermally optimized package was designed, that allows for direct thermal radiation to maintain low-junction temperatures for the GaN parts maximizing long-term reliability. Lastly, real radar waveforms are characterized and analysis of amplitude and phase stability over temperature demonstrate ultra-stable operation over temperature using integrated bias compensation circuitry allowing less than 0.2 dB amplitude variation and 2 deg phase variation over a 70 C range
Conceptual Development of the DESDynI Mission
The high value of Radar and Lidar data for understanding climate change and earth dynamics led to the prioritization of the Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) mission as Tier One in the last National Academy of Sciences' Earth Science Decadal Survey. A mission concept that matched those desired objectives underwent pre-Project development and passed several layers of review in late 2010 and early 2011 with the target of a 2017 launch. However, cuts in the proposed FY2012 budget forced a reset of the Radar mission and eliminated the Lidar sciencecraft. The proposed DESDynI- Radar mission may now fulfill a more limited set of objectives with a more modest budget on a longer development timescale. A multitude of options have been studied with varying levels of cost, risk and science value. Flight and Ground system implementations have a direct bearing on many of these factors and will also be addressed. The methodology and status of evaluating these options will be discussed. A key distinguishing characteristic of the projected DESDynI-Radar measurement would be large scale coverage and frequent revisit at fine resolution. This would be enabled via a new Radar technique called SweepSAR. Efforts to develop and field test SweepSAR will also be discussed, as well as other technology developments underway that are associated with this missio
Digital Calibration of TR Modules for Real-time Digital Beamforming SweepSAR Architectures
Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable SweepSAR architectures such as that of the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI). These new instrument concepts require new methods for calibrating the multiple channels, which must be combined on-board, in real-time. The calibration of current state-of-the-art Electronically Steered Arrays typically involves pre-flight TR (Transmit/Receive) module characterization over temperature, and in-flight correction based on temperature, which ignores the effects of element aging and drifts unrelated to temperature. We are developing new methods for digitally calibrating digital beamforming arrays to reduce development time, risk and cost of precision calibrated TR modules for array architectures by accurately tracking modules' characteristics through closed-loop Digital Calibration, thus tracking systematic changes regardless of temperature. The benefit of this effort is that it would enable a new class of lightweight radar architecture, Digital Beamforming with SweepSAR, providing significantly larger swath coverage than conventional SAR architectures for solid earth and biomass remote sensing, while reducing mission mass and cost. This new instrument concept requires new methods for calibrating the multiple channels, which must be combined on-board, in real-time
Digital Calibration of TR Modules for Real-Tme Digital Beamforming SweepSAR Architectures
Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable a new architecture, which is the baseline for the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI). This new instrument concept requires new methods for calibrating multiple simultaneous channels. The calibration of current state-of-the-art Electronically Steered Arrays typically involves pre-flight TR (Transmit/Receive) module characterization over temperature, and in-flight correction based on measured temperatures. This method ignores the effects of element aging and any drifts unrelated to temperature. We are developing new digital calibration of digital beamforming arrays, which helps to reduce development time, risk and cost. Precision calibrated TR modules enable real-time beamforming architectures by accurately tracking modules' characteristics through closed-loop digital calibration, which tracks systematic changes regardless of temperature. The benefit of this effort is that it would enable a new, lightweight radar architecture, with on-board digital beamforming. This provides significantly larger swath coverage than conventional SAR architecture
A P-band Radar Mission to Mars
Large regions of Mars are covered by dust that obscures geological evidence for fluvial channels, the extent of volcanic flows, and features associated with near-surface ground ice. We describe a Mars orbiting mission carrying a P-band SAR to map these hidden surface features. Mapping would be carried out in HH and VV polarizations, with the comparison of the two expected to yield a distinction between surface echoes and subsurface features beneath up to 5 m of dust. Repeat-pass interferometry data would also be collected to characterize volatile migration at the poles, aeolian shifting of the dust mantle, and possible volcanic deformation. This paper describes the technical design of a P-band SAR for global mapping of Mars, and the characteristics of the proposed mission
Advances in Digital Calibration Techniques Enabling Real-Time Beamforming SweepSAR Architectures
Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable SweepSAR architectures, which promise significant increases in instrument capability for solid earth and biomass remote sensing. These new instrument concepts require new methods for calibrating the multiple channels, which are combined on-board, in real-time. The benefit of this effort is that it enables a new class of lightweight radar architecture, Digital Beamforming with SweepSAR, providing significantly larger swath coverage than conventional SAR architectures for reduced mass and cost. This paper will review the on-going development of the digital calibration architecture for digital beamforming radar instrument, such as the proposed Earth Radar Mission's DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) instrument. This proposed instrument's baseline design employs SweepSAR digital beamforming and requires digital calibration. We will review the overall concepts and status of the system architecture, algorithm development, and the digital calibration testbed currently being developed. We will present results from a preliminary hardware demonstration. We will also discuss the challenges and opportunities specific to this novel architecture
Implementation of RF Circuitry for Real-Time Digital Beam-Forming SAR Calibration Schemes
The SweepSAR architecture for space-borne remote sensing applications is an enabling technology for reducing the temporal baseline of repeat-pass interferometers while maintaining near-global coverage. As part of this architecture, real-time digital beam-forming would be performed on the radar return signals across multiple channels. Preserving the accuracy of the combined return data requires real-time calibration of the transmit and receive RF paths on each channel. This paper covers several of the design considerations necessary to produce a practical implementation of this concept
SMAP's Radar OBP Algorithm Development
An approach for algorithm specifications and development is described for SMAP's radar onboard processor with multi-stage demodulation and decimation bandpass digital filter. Point target simulation is used to verify and validate the filter design with the usual radar performance parameters. Preliminary FPGA implementation is also discussed