80 research outputs found

    The Ray Tracing Analytical Solution within the RAMOD framework. The case of a Gaia-like observer

    Get PDF
    This paper presents the analytical solution of the inverse ray tracing problem for photons emitted by a star and collected by an observer located in the gravitational field of the Solar System. This solution has been conceived to suit the accuracy achievable by the ESA Gaia satellite (launched on December 19, 2013) consistently with the measurement protocol in General relativity adopted within the RAMOD framework. Aim of this study is to provide a general relativistic tool for the science exploitation of such a revolutionary mission, whose main goal is to trace back star directions from within our local curved space-time, therefore providing a three-dimensional map of our Galaxy. The results are useful for a thorough comparison and cross-checking validation of what already exists in the field of Relativistic Astrometry. Moreover, the analytical solutions presented here can be extended to model other measurements that require the same order of accuracy expected for Gaia.Comment: 29 pages, 1 figur

    Time Transfer functions as a way to validate light propagation solutions for space astrometry

    Full text link
    Given the extreme accuracy of modern space astrometry, a precise relativistic modeling of observations is required. Concerning light propagation, the standard procedure is the solution of the null-geodesic equations. However, another approach based on the Time Transfer Functions (TTF) has demonstrated its capability to give access to key quantities such as the time of flight of a light signal between two point-events and the tangent vector to its null-geodesic in a weak gravitational field using an integral-based method. The availability of several models, formulated in different and independent ways, must not be considered like an oversized relativistic toolbox. Quite the contrary, they are needed as validation to put future experimental results on solid ground. The objective of this work is then twofold. First, we build the time of flight and tangent vectors in a closed form within the TTF formalism giving the case of a time dependent metric. Second, we show how to use this new approach to obtain a comparison of the TTF with two existing modelings, namely GREM and RAMOD. In this way, we evidentiate the mutual consistency of the three models, opening the basis for further links between all the approaches, which is mandatory for the interpretation of future space missions data. This will be illustrated through two recognized cases: a static gravitational field and a system of monopoles in uniform motion.Comment: 16 pages, submitted to CQ

    The Global sphere reconstruction (GSR) - Demonstrating an independent implementation of the astrometric core solution for Gaia

    Get PDF
    Context. The Gaia ESA mission will estimate the astrometric and physical data of more than one billion objects, providing the largest and most precise catalog of absolute astrometry in the history of Astronomy. The core of this process, the so-called global sphere reconstruction, is represented by the reduction of a subset of these objects which will be used to define the celestial reference frame. As the Hipparcos mission showed, and as is inherent to all kinds of absolute measurements, possible errors in the data reduction can hardly be identified from the catalog, thus potentially introducing systematic errors in all derived work. Aims. Following up on the lessons learned from Hipparcos, our aim is thus to develop an independent sphere reconstruction method that contributes to guarantee the quality of the astrometric results without fully reproducing the main processing chain. Methods. Indeed, given the unfeasibility of a complete replica of the data reduction pipeline, an astrometric verification unit (AVU) was instituted by the Gaia Data Processing and Analysis Consortium (DPAC). One of its jobs is to implement and operate an independent global sphere reconstruction (GSR), parallel to the baseline one (AGIS, namely Astrometric Global Iterative Solution) but limited to the primary stars and for validation purposes, to compare the two results, and to report on any significant differences. Results. Tests performed on simulated data show that GSR is able to reproduce at the sub-ÎĽ\muas level the results of the AGIS demonstration run presented in Lindegren et al. (2012). Conclusions. Further development is ongoing to improve on the treatment of real data and on the software modules that compare the AGIS and GSR solutions to identify possible discrepancies above the tolerance level set by the accuracy of the Gaia catalog.Comment: Accepted for publication on Astronomy & Astrophysic

    POSSIBLE ASTRONOMICAL MEANINGS OF SOME EL MOLLE RELICS NEAR THE ESO OBSERVATORY AT LA SILLA

    Get PDF
    Abstact: This paper describes a peculiar, man-made circular stone structure, associated with the ancient rock engravings that are around the site of La Silla in Chile close to the European Southern Observatory, and are attributed to the El Molle Culture. Three stones of the circle, different from all the others, were likely to pinpoint the alignment of three bright stars close to the horizon, as seen from a specific vantage point inside the structure. The El Molle was the only period in which this alignment occurred significantly close to the horizon, moreover it was only in this epoch that it could also be associated with the transition from the warm to the cold season, a period of the year which was quite important for a society that supported itself by herding and farming

    The MPI+CUDA Gaia AVU-GSR Parallel Solver in perspective of next-generation Exascale Infrastructures and new Green Computing milestones

    Get PDF
    We ported on the GPU with CUDA the Gaia Astrometric Verification Unit-Global Sphere Reconstruction (AVU-GSR) Parallel Solver. The code aims to find the astrometric parameters of ~10^8 stars in the Milky Way, the attitude and the instrumental settings of the Gaia satellite, and the global parameter of the PPN formalism, by solving a system of linear equations, × = , with the LSQR iterative algorithm. The coefficient matrix is large, having ~10^11 × 10^8 elements, and sparse. The CUDA code accelerates ≳ 14 times compared to the current version of the AVU-GSR code, parallelized on the CPU with MPI+OpenMP and in production since 2014. This acceleration factor is ~9.2 times larger than the one obtained with a preliminary GPU porting with OpenACC, equal to ~1.5. We obtained this result by running the codes on the CINECA SuperComputer Marconi100, that has 4 NVIDIA Volta V100 GPUs per node, where the MPI+CUDA application has been recently put in production. This analysis represents a first step to understand the exascale behaviour of a class of applications that follow the same structure of this code, employed in several contexts. In the next months, we plan to run this code on the pre-exascale platform Leonardo of CINECA, with 4 next-generation A100 GPUs per node, to better investigate this behaviour. Computing on highly parallel devices, such as GPUs, might imply a consistent power saving, which might go towards the achievement of a Green Computing milestone
    • …
    corecore