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ABSTRACT

Context. The Gaia ESA mission will estimate the astrometric and physical data of more than one billion objects, providing the largest
and most precise catalog of absolute astrometry in the history of astronomy. The core of this process, the so-called global sphere
reconstruction, is represented by the reduction of a subset of these objects which will be used to define the celestial reference frame.
As the Hipparcos mission showed, and as is inherent to all kinds of absolute measurements, possible errors in the data reduction can
hardly be identified from the catalog, thus potentially introducing systematic errors in all derived work.
Aims. Following up on the lessons learned from Hipparcos, our aim is thus to develop an independent sphere reconstruction method
that contributes to guarantee the quality of the astrometric results without fully reproducing the main processing chain.
Methods. Indeed, given the unfeasibility of a complete replica of the data reduction pipeline, an astrometric verification unit (AVU)
was instituted by the Gaia Data Processing and Analysis Consortium (DPAC). One of its jobs is to implement and operate an inde-
pendent global sphere reconstruction (GSR), parallel to the baseline one (AGIS, namely Astrometric Global Iterative Solution) but
limited to the primary stars and for validation purposes, to compare the two results, and to report on any significant differences.
Results. Tests performed on simulated data show that GSR is able to reproduce at the sub-µas level the results of the AGIS demon-
stration run.
Conclusions. Further development is ongoing to improve on the treatment of real data and on the software modules that compare the
AGIS and GSR solutions to identify possible discrepancies above the tolerance level set by the accuracy of the Gaia catalog.

Key words. astrometry – reference systems – catalogs – methods: numerical – space vehicles

1. Introduction

The main goal of the Gaia mission, a European Space Agency
(ESA) satellite launched in December 2013, is the production
of a five-parameter astrometric catalog (i.e., including posi-
tions, parallaxes and the two components of the proper motions)
at the 10–1000 µarcsecond-level (µas) for about one billion
stars of our Galaxy in the magnitude range from 3 to 20.7
(Gaia Collaboration 2016).

To this end, the satellite has been designed as a scanning tele-
scope that sweeps continuously and repeatedly the entire celes-
tial sphere during the five years of its foreseen mission duration.
The target accuracy can be reached by averaging on the ∼103

observations per object, each at the ∼0.1−1 mas level, and it
relies on the self-calibration capability of the instrument, as well
as on complementary photometric and spectroscopic data col-
lected on board. The latter will also make it possible to include in
the Gaia catalog a multiband spectro-photometric classification
and the radial velocities of the objects brighter than G ≈ 16.2
(Gaia Collaboration 2016).

The sky is scanned according to a predetermined nominal
scanning law (NSL) whose parameters are fixed at the beginning

of the operational phase and actively controlled by the micro-
thrusters of the on-board Attitude and Orbit Control Systems
(AOCS). The NSL is characterized by constant spin and preces-
sion rates, which implies that objects cross the focal plane at
quasi-constant speed. As a consequence, in principle the dura-
tion of a single observation is the same for any star, and
therefore the single-measurement accuracy is strongly
magnitude-dependent (Fig. 1). Moreover, the scanning law
parameters induce a complete scan of the celestial sphere every
six months, but with a non-uniform coverage in terms of the
number of single transits over a specific region, which implies
that the number of observations of each object depends on its
coordinates (Fig. 2). Therefore, the final astrometric accuracy of
a specific object mainly depends on its magnitude and location
on the sky.

Contrary to what usually happens for a space mission, for
this mission ESA was in charge of the full development of
the satellite, including the payload. The scientific community
instead, organized in the Gaia Data Processing and Analysis
Consortium (DPAC; Mignard & Drimmel 2007) funded by the
national space agencies, has been in charge of the establish-
ment of the data reduction pipelines of the mission. The software
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Fig. 1. Approximate estimation of the Gaia single-measurement along-
and across-scan accuracy (AL and AC) as function of the G magnitude.
The oscillating shape up to mag 12 is due to the use of CCD gates in
order to avoid saturation for bright objects. The estimation is the result
of a best-fit model that averages over the whole Astrometric Field (AF).

is developed by nine Coordination Units (CUs) while six Data
Processing Centres (DPCs) spread all over Europe are commis-
sioned of managing and running the pipelines.

The realization of the complete catalog is a complicated
process in which the definition of the global reference frame is
realized by a procedure called global astrometric sphere recon-
struction. The latter operates with global astrometric data reduc-
tion techniques on a subset of ∼107−108 “primary stars”, similar
in number to that of other modern global astrometric catalogs
(Zacharias et al. 2013; Qi et al. 2015) and mainly selected at the
bright end of the Gaia objects. This allows to set the astrometric
parameters of these objects with respect to a standard reference
system called Barycentric Celestial Reference System (BCRS;
Kaplan 2005) thus providing the first materialization of such a
frame of reference. The refinement of the instrument calibration
needed to achieve the required catalog accuracy is carried out as
part of the primary stars’ processing. Once the reference system
and the calibration parameters have been established, the mea-
surements of the remaining stellar objects (secondary stars) can
be reduced by considering only their astrometric parameters as
unknowns. This allows to attach them to the primary stars and
therefore to densify the reference frame. Basically, a star can be
included in the primaries subset when its astrometric model can
be described by the classical 5 parameters. Multiple stars with
too short a period, or stars with a variability too large are exam-
ples of objects that cannot belong to the primaries. The two-steps
process described above, namely the one including the global
sphere reconstruction and the reduction of the secondary stars, is
realized within the CU3, “Core Processing”, by a pipeline called
Astrometric Global Iterative Solution (AGIS; O’Mullane et al.
2011; Lindegren et al. 2012).

The global sphere reconstruction, and the materialization of
a celestial reference system, has an absolute character (in the
sense that it defines the reference system instead of giving the
coordinates of the stars with respect to an already existing one)
which implies an intrinsic difficulty at insuring the correctness
of the astrometric parameters and at the same time the risk
of propagating these errors everywhere in Astrophysics. This
issue is well known to the scientific community, and significant
effort is usually paid to both the tasks of internal verifications
and of cross-checking comparison with different datasets (see,
e.g. Lindegren et al. 2016; Casertano et al. 2017; Makarov et al.
2017; Frouard et al. 2018). In the case of the Gaia forerun-
ner, HIPPARCOS, the astrometric community provided the final

Fig. 2. Frequency of observations as function of equatorial coordinates
due to Gaia scanning law (blue ≈ 50–yellow ≈ 500).

catalog only after having compared two sphere reconstructions
realized by two independent consortia. In the case of Gaia the
task is so big that it is not feasible to repeat the same approach,
but the DPAC decided to constitute an Astrometric Verification
Unit (AVU) within the CU3 with the goal of replicating in an
independent way three specific tasks of particular importance
for the sphere reconstruction, namely the Astrometric Instru-
ment Model (AIM; Busonero 2012; Busonero et al. 2014) for the
instrument and focal plane calibration, the Basic Angle Monitor-
ing (BAM; Riva et al. 2014) which has to determine the varia-
tions of the lines of sight of the double telescope, and the Global
Sphere Reconstruction (GSR) whose aim is to provide an inde-
pendent sphere reconstruction and to compare it with the AGIS
one.

Since its goal is to allow a cross-checking of the sphere solu-
tion, in the sense of the reference system determination, GSR
does not replicate the entire AGIS pipeline, but is limited to
the processing of primary sources. Moreover, GSR depends on
AGIS both for the determination of such sources – even though
it has the capability of providing an independent selection – and
for the rejection of time intervals with noisy attitude which must
not enter in the sphere reconstruction. On the other hand, GSR
is in charge of the comparison task between its own solution and
that of the AGIS pipeline.

In this paper we adopt the following conventions and nota-
tions:
1. in general, bold upright letters refers to 3D Euclidean vectors

(x) while for basis unit vectors the notation eâ, a = 1, 2, 3 is
used;

2. four-vectors are indicated by bold italic letters (x) or in index
notation with Greek indexes, that is xα, α = 0, 1, 2, 3 with 0
referring to the time coordinate;

3. the signature of the metric gαβ is +2;
4. the symbol ηαβ denotes the Minkowskian metric

diag{−1, 1, 1, 1};
5. tetrad unit vectors are identified by eα̂, α = 0, 1, 2, 3, while

eâ are the tetrad spatial axes;
6. the proper time of an observer is indicated with the Greek

letter τ, while t is the coordinate time;
7. we adopt the symbol ∂α as a shorthand notation for the

derivative ∂/∂xα.

2. Modeling the observations for the global
astrometric sphere reconstruction

2.1. Geometric characterization of the observable

In a purely Euclidean geometric view, the NSL gives at each
instant the orientation of the Satellite Reference System (SRS)
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Fig. 3. Parametrization of the Gaia Nominal Scanning Law with respect
to an equatorial reference system

{
E1̂,E2̂,E3̂

}
. NS is the Nominal Sun.

that is of the reference triad {eâ}, a = 1, 2, 3 attached to the satel-
lite, whose origin coincides with the barycentre of Gaia, with
respect to the inertial reference system of the catalog. The posi-
tion and orientation of the satellite results from the combination
of three independent movements: the orbital motion of the satel-
lite, which follows a Lissajous trajectory around the L2 point of
the Sun–Earth system, the constant-rate satellite spin around the
axis e3̂, and the precession of this axis around the Sun–satellite
direction, with constant rate and keeping a constant solar aspect
angle ξ. Thus in an equatorial coordinate system the SRS is
completely determined by five parameters: the heliotropic angles
(ξ, ν,Ω), the obliquity of the Ecliptic ε and the longitude of the
nominal Sun λs (Fig. 3). Obviously the instantaneous orientation
of the satellite depends also on the initial conditions of the NSL.
Since the solar aspect angle ξ is set to 45◦, the actual scanning
law is fully determined by setting the remaining three degrees of
freedom, namely ν, Ω and λs, at a given reference time.

In this geometrical model the two Fields-of-View (FoVs) of
Gaia lie on the satellite’ scanning plane e1̂ − e2̂ and are point-
ing symmetrically with respect to e1̂, separated by an (approxi-
mately) constant Basic Angle (BA) Γ. If r is the position vector
of a point-like source, in the SRS the basic observables of Gaia
can be represented by its along-scan measurement (AL) that is
the abscissa φ, which is the angle between the projection of r
on the instantaneous scanning plane and e1̂, and the across-scan
measurement (AC) ζ (Fig. 4).

These quantities can be represented in terms of the direction
cosines of r with respect to the SRS

cos φ =
cosψ(1̂,r)√

1 − cos2 ψ(3̂,r)
(1)

sin ζ = cosψ(3̂,r), (2)

while the direction cosine of r with respect to the axis eâ is

cosψ(â,r) =
eâ · r

(r · r)1/2 . (3)

Fig. 4. Representation of the AL (φ) and AC (ζ) Gaia measurements
with respect to the satellite attitude

{
e1̂, e2̂, e3̂

}
.

It is worth stressing that these modeling equations leave a poten-
tial ambiguity in the sign of the abscissa φ, which should be neg-
ative when the observation lies in FoV1 and positive in FoV2.
However, the FoV of each observation is specified in the Gaia
data, which removes this ambiguity.

2.2. Unknown parameters in the Gaia sphere reconstruction

In general eâ and r will be functions of the time of observation, of
the attitude parameters and of the source parameters respectively.
The latter are the classical parallax, positions and proper motions
($,α, δ, µα, µδ) because in this case all the sources are primaries,
while the attitude parameters have to be counted among the
unknowns too, because they cannot be determined independently
at the level needed for the Gaia accuracy. The attitude parame-
ters and the explicit form of the functions, however, will depend
on the specific astrometric model adopted to represent the obser-
vation.

Gaia is also a self-calibrating mission, in the sense that there
are no metrologic instruments, with the only exception of the
BAM, dedicated to the calibration. All the calibrations except
for the monitoring of the Basic Angle variations are done using
the Gaia observations only. This task is accomplished in two
different ways. One is a daily calibration done by the two inde-
pendent pipelines, First Look (FL) and, in the AVU subsystem,
AIM; the other one is embedded in the sphere solution. The
daily calibration is needed to monitor the instrument, using sci-
ence data to trace directly the instrument response thanks to the
repeated measurements of stars over the field, but as long as this
procedure relies on a daily approach, it cannot reach the accu-
racy needed by the sphere reconstruction. Therefore, as it will
be better specified in Sect. 2.6, AGIS and GSR have to intro-
duce appropriate calibration parameters as additional unknowns
of their models.

Finally, there exist also another class of unknowns called
global parameters. Such name derives from their presence in
all the rows of the system of equations that is built from the
Gaia observations, as it will be explained in Sect. 3.1, and
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typically their number is the smallest with respect to all the other
classes.

By indicating with xS, xA, xC and xG the list of source, atti-
tude, calibration and global parameters respectively, Eqs. (1) and
(2) can be formally written as

cos φ = fφ
(
xS, xA, xC, xG

)
(4)

sin ζ = fζ
(
xS, xA, xC, xG

)
. (5)

2.3. Gaia accuracy and the relativistic observable

The target accuracy of Gaia is at the sub-mas level at least,
moreover the catalog will be released in the BCRS and linked
to the International Celestial Reference Frame (ICRF) defined
by VLBI observations (Fey et al. 2015)1. For these reasons it
is necessary to use a mathematical model of the observations
based on General Relativity. Basically, the task of this model is
to provide a relativistically consistent formula to replace Eq. (3).
This requires the relativistic equivalent of the photon’s incom-
ing direction (r), of the satellite attitude (the SRS), and of the
definition of scalar product.

In General Relativity the trajectory of a light ray connecting
a source with the observer is defined by a set of four-dimensional
events xα (s), for which the condition gαβdxαdxβ = 0 holds, and
is thus called null geodesic, parametrized by a generic affine
parameter s. This trajectory can be found by integrating the
geodesic equations

d2xα

ds2 + Γαµν
dxµ

ds
dxν

ds
= 0, (6)

where

Γαµν =
1
2

gαρ
(
∂µgνρ + ∂νgρµ − ∂ρgµν

)
, (7)

and the role of r is usually played by the value of the tangent
to the null geodesic at the point of observation, namely by the
four-vector kα = dxα/ds evaluated at that point. The photon’s
incoming direction computed in this way obviously depends on
the relativistic effects induced by the metric and thus by the grav-
itational effects of the massive bodies, such as, for example, the
so-called light deflection.

Any measurement is always defined with respect to a specific
observer, identified with its four-velocity uα = dxα/dτ, which
induces a natural 3+1 splitting of the spacetime, that is the iden-
tification of the space and of the time respectively associated
to such observer. Specifically, uα is tangent to the time axis of
the observer, represented by its worldline, and the 3D space is
the subspace orthogonal to uα. Any spatial measurement, there-
fore, is performed by means of the operator hαβ = gαβ + uαuβ
which can project the appropriate four-dimensional quantities
onto this 3D subspace, and is thus used as a replacement of the
usual 3D dot product. For example, if in Euclidean geometry
the angle α between two vectors r1 and r2 satisfies the relation
cosα = r1 · r2/ (r1r2), with r = (r · r)1/2, the corresponding gen-
eral relativistic expression will be

cosα =
hαβkα1 kβ2(

hµνk
µ
1kν1

)1/2 (
hρσkρ2kσ2

)1/2 · (8)

1 The ICRF is the so-called realization of the International Celestial
Reference System (ICRS; Souchay & Feissel-Vernier 2006). Likewise,
the Gaia catalog is the realization of the BCRS.

It is worth noticing that in this way the aberration effects are
automatically accounted for by the inclusion of the observer’s
four-velocity in hαβ.

Finally, one standard way to handle the SRS is based on
the so-called tetrad formalism (de Felice & Bini 2010), which is
based on the possibility of identifying a locally Lorentzian refer-
ence system associated to a specific observer uαs , that is a set of
four-dimensional axes eα̂, α = 0, . . . , 3 called tetrad defined by
the conditions

gµνe
µ
α̂eν

β̂
= ηαβ, eα

0̂
≡ uαs . (9)

In this way, we are inducing the same 3+1 splitting of above
with the addition of a set of three four-dimensional axes {eâ},
a = 1, 2, 3 belonging to the 3D space of uα. Since by definition
gµνuµeνâ = gµνe

µ

0̂
eνâ = 0 and gµνe

µ
âeν

b̂
= ηab = δab, these axes are

spatial (in the sense that they are orthogonal to uαs and thus lie
on its 3D space) and orthonormal, so they provide the replace-
ment for the Euclidean triad of Eq. (3) and can be used to define
the attitude (SRS) of the satellite. The orientation of the spatial
axes, in fact, is constrained only by the orthonormality condi-
tion, which implies that any spatial 3D rotation brings to a new
tetrad with a different spatially oriented triad.

By combining all the above considerations we can write
the general relativistic expression for the direction cosine with
respect to a general spatial axis of the tetrad as

cosψ(â,k) =
hαβeαâ kβ(

hµνkµkν
)1/2 · (10)

On the other hand, the AL and AC measurements of Eqs. (1) and
(2) are defined in the 3D subspace of uαs as long as the direction
cosines are the relativistic ones, therefore they do not need any
relativistic replacement.

We can thus summarize the general procedure applied to
build the relativistic model of the Gaia observations used in GSR
with the following list:
1. integrate the geodesic equations (6) for the given metric (the

BCRS one, in the case of Gaia) and find an expression of kα
at the point of observation as function of the source’s coor-
dinates;

2. find the appropriate expression uαs of the barycentric motion
of Gaia in the BCRS;

3. use the above four-velocity and the BCRS metric to compute
the spatial projector hαβ;

4. find the Gaia relativistic tetrad by a two-steps procedure:
(a) use Eq. (9) to define a local tetrad, whose origin is

comoving with the barycentre of Gaia and whose spa-
tial axes are kinematically parallel to those of the BCRS
(“boosted tetrad”);

(b) 3D rotate the spatial axes to make them coincide with the
satellite orientation, thus realizing a tetrad associated to
the Gaia barycentric and attitude motion e0̂,eâ;

5. use kα, hαβ and eαâ in Eq. (10) to compute the needed direction
cosines;

6. use Eqs. (1) and (2) to compute the Gaia measurements.
Within this general framework, the accuracy needed for the
astrometric model is set by that of the Gaia measurements and of
its final catalog. In practice it is useful to link the two by means
of the post-Newtonian “bookkeeping” (Will 1993). In this way,
considering that the typical velocities in the Solar System are
'30 km s−1, the so-called 1PN order of (ν/c)2 would correspond
to a ∼ 10−8 rad in angular accuracy, that is to the mas level,
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allowing one to set the befitting model accuracy at the 1.5PN
order (ν/c)3, corresponding to 10−12 rad, or ∼0.1 µas.

Actually, this has to be considered just a first, although con-
venient, guess. Things can be much different in the real case,
and the final accuracy strongly depends on other factors, like
the geometry of the observations or the observation strategy. For
example, in a global problem like the sphere solution, for large
regions of the sky one can safely rely on less stringent accuracy
requirements, whereas relative astrometric observations close to
Solar System planets would surely need a more accurate model.
In this context, we also stress that Gaia-level final accuracies
have also been reached in the context of differential astrometry
(Brown et al. 2018).

GSR is designed to be flexible in regard to the relativistic
modeling of the observable, and different relativistic models are
under development to add value to the verification purposes of
this pipeline. We are dealing specifically with this issue in a
forthcoming publication (Vecchiato et al., in prep.) whereas in
the next subsection we are concentrating on the implementation
of GSR2, namely the present version of our pipeline.

2.4. Integration of the geodesic equation in the current
pipeline implementation

The geodesic equations are integrated in the single-body PPN-
Schwarzschild metric, where the tangent to the null geodesic
kα is a function of three constants of motion E∗, Λ∗, and λ∗
characteristic of the geodesic connecting the observer with the
observed object in the Schwarzschild metric2, of the satellite
position (rs, θs, φs), and of the PPN-γ parameter:

kα = kα (E∗,Λ∗, λ∗, rs, θs, φs, γ) . (11)

First of all, it is worth stressing that the accuracy of the Gaia
measurement allows for the estimation of the γ parameter as a
by-product of the global sphere reconstruction (Vecchiato et al.
2003). This implies that this parameter can be treated as an
unknown belonging to the vector of global parameters xG.

Moreover, the constants of motion can be written as func-
tions of the astrometric unknowns at the time of observation, by
means of the same principle used in Vecchiato et al. (2003) and
references therein, which in summary eliminates the dependence
on E∗ and provides two equations that implicitly relate the stellar
position with Λ∗ and λ∗

fr ($∗, rs,Λ∗, γ) = fθ (θ∗, θs, λ∗/Λ∗)
f̄θ (θ∗, θs,Λ∗, λ∗) = fφ (φ∗ − φs)

(12)

where $ = a/r∗ is the parallax, a = 1 AU is the parallaxes base-
line, θ∗ = π/2 − δ and φ∗ ≡ α. Finally, the proper motion can be
easily included in the model simply by considering the integra-
tion limits on θ∗ and φ∗ as function of the (coordinate) time, that
is

δ ≡ δ(t) = δ(t0) + µδ × (t − t0) (13)
α ≡ α(t) = α(t0) + µα × (t − t0) (14)

where t0 is the epoch of the astrometric catalog or an equivalent
reference time. The above formulae neglect the effect on spheri-
cal coordinates at second order in proper motions (see e.g. Green
1985, p. 264), which are negligible in most cases. For example,
in the catalog of more than 900 000 simulated stars considered

2 E∗, Λ∗, and λ∗ have the meaning of the photon’s energy, total angular
momentum over energy and z-angular momentum over energy.

for the demonstration run of this paper, this effect is larger than
5 µas after 5 years for just 22 objects in α and 5 objects in δ.

It is clear from this summary that, as long as the metric is
a Schwarzschild one due to the gravitational pull of the Sun,
the accuracy of the null geodesic integration is not the required
one. At the same time it is obvious that the Gaia accuracy can
be attained when the observing direction is sufficiently far from
the gravitational perturbation of the Solar System bodies. One
can approximately estimate these “avoidance zones” by compar-
ing the estimated measurement accuracy with the Schwarzschild
contribution to the light deflection of each single body as a func-
tion of its angular distance ψ from the source (Misner et al. 1973)

δψ =
(1 + γ) M

c2rs

√
1 + cosψ
1 − cosψ

, (15)

where M is the mass of the body and rs its distance from the
satellite. For example, the minimum angular distance that a
source must have from Jupiter in order to keep the model accu-
racy below the ∼10 µas, level is about 10.5◦.

On the other hand, the model accuracy can be enhanced by
adding the estimated light deflection effects of Eq. (15) to the
pure Schwarzschild model; such contribution to the light deflec-
tion has to be computed at an appropriate retarded time which
takes into account the finite speed of the light. These corrections
are done separately for φ and ζ by projecting the δψ on the AL
and AC direction according to the geometrical configuration of
the observation. Clearly this is in no way an exact solution, but,
as shown in (Vecchiato et al., in prep.) where a more detailed
description of the model will also be provided, numerical tests
have proven that the accuracy of this model is much better than
that of the pure Schwarzschild one.

2.5. Satellite barycentric motion and attitude model

As shown in Crosta & Vecchiato (2010), the four-velocity of the
satellite can be written as uαs = u0

s

(
δα0 + νi

sδ
α
i

)
≡ u0

s

{
1, νx

s , ν
y
s , ν

z
s

}
where νs is the coordinate velocity of the satellite and, using the
IAU resolutions (Kaplan 2005),

u0
s = 1 +

U
c2 +

1
2
ν2

s

c2 + O

(
ν4

c4

)
· (16)

Here ν2
s =

(
νx

s
)2

+
(
ν
y
s

)2
+
(
νz

s
)2 and U is the (BCRS) N-body gravi-

tational potential of the Solar System at the Gaia location, which
implies that the four-velocity, contrary to the null geodesic, is
expressed to the right accuracy.

The construction of the attitude tetrad, as anticipated in
Eq. (9), starts from this four-vector by setting eα

0̂
= uαs . Then one

has to fix the spatial triad by considering the following transfor-
mations (Crosta & Vecchiato 2010; Bianchi et al. 2011):
1. the origin of the tetrad is located at the BCRS coordinates of

the satellite barycentre, which induces a first transformation
to the so-called local BCRS tetrad (Bini et al. 2003). This is
a tetrad at rest with respect to the BCRS, but whose spatial
axes have a general relativistic contribution caused by the
gravitational potential of the Solar System at that point;

2. the satellite barycentre moves with four-velocity uαs in the
BCRS, which induces a second transformation to the boosted
tetrad with spatial axes eâ,b whose origin is comoving with
the barycentre of the satellite3. If the four-velocity of the

3 This tetrad is thus the CoMRS of the Gaia DPAC nomenclature
(Lindegren et al. 2012).
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BCRS, and therefore also that of the local BCRS, is uα, then
at each instant the comoving tetrad can be computed with
a special relativistic transformation, namely a boost, on the
previous one whose Lorentz factor is γL =

(
1 − ν2

s/c
2
)−1/2

=

−uαs uα;
3. the satellite orientation, that is the SRS eâ, can be finally

obtained by a Euclidean transformation of its spatial axes,
eαâ = Reαâ,b, where R is simply a 3D rotation matrix obtained
by a standard attitude parametrization. AGIS uses quater-
nions, while GSR is based on the Modified Rodrigues
Parameters (MRP) σ1, σ2 and σ3 described, for example,
in Schaub & Junkins (1996). Since MRP representation uses
only three parameters instead of the four of the quater-
nions, adopting the MRP representation allows to reduce the
number of attitude unknowns. Moreover, quaternions require
the enforcing of a normalization condition, implemented
through additional constraint equations, due to their redun-
dant parametrization. On the other hand, such redundancy
allows to avoid the problem of singularities that is present in
other parametrizations (including the MRP). The scanning
law of Gaia, however, is always sufficiently far from the sin-
gularity points of the MRP.

Despite their different accuracy, the null geodesic and the atti-
tude parts stem from similar mathematical assumptions, which
makes them mutually compatible at the (ν/c)2 order. Basically,
the main requirement is that the metric has the form

gαβ = ηαβ + hαβ + O
(
h2

)
(17)

where, for the null geodesic integration, we retained only the
(ν/c)2-order perturbation term given by the gravitational poten-
tial of a massive body h(2)

00 = 2U/c2, so that h00 ∼ hi j =

h(2)
00 δi j + O

(
ν4/c4

)
, while the attitude model can include also

higher order terms, namely h0i ∼ ν
3/c3 + O

(
ν5/c5

)
which enter

in the definition of the local BCRS tetrad.
Considering the problem of the attitude representation, it

has to be recalled that, regardless of the specific parametriza-
tion chosen to represent the attitude matrix, each component of
such parametrization has to be expressed with a finite and time-
dependent number of attitude unknowns xA. The required final
accuracy of the measurements does not permit the use of a phys-
ical model for the attitude due to several factors; for example,
the micro-propulsion system introduces a high-frequency noise.
As in AGIS, then, an attitude parameter (that is a quaternion
or an MRP component) is represented by a purely numerical
expansion written as a linear combination of time-dependent
polynomial functions B (t) of degree M − 1 called B-Splines
(Ahlberg & Nilson 1967) whose characteristics are summarized
in the following.

The expansion of the jth component of a generic representa-
tion, say S , reads

S j (t) =

N−1∑
n = 0

c( j)
n Bn (t) , (18)

where c( j)
n are unknown attitude coefficients to be determined.

The function S j (t) is defined in a time interval
[
tbeg, . . . , tend

]
divided in K > 0 sub-intervals identified by a sequence of
instants {τk}, k = 0, . . . ,K called nodes, which constitutes the
so-called support of the series. The B-Splines are useful in our
case because their support is minimal, that is Bn (t) , 0 only in

M sub-intervals, so if τn < t < τn+1 then,

S j (t) = f
(
c( j)

n−M/2, . . . , c
( j)
n−2, c

( j)
n−1, c

( j)
n , c( j)

n+1, . . . , c
( j)
n+M/2−1

)
, (19)

in the sense that at each time the expansion depends only on M
unknowns. For Gaia the expansion is in cubic B-splines, that is
M = 4, and therefore

S j (t) = f
(
c( j)

n−2, c
( j)
n−1, c

( j)
n , c( j)

n+1

)
. (20)

Finally, having split a time segment in K − 1 intervals, the
resulting number of degrees of freedom, and thus of attitude
unknowns, for that segment is given by N = K + M − 1.

Another important point in using a series expansion like the
B-Splines lies in the possibility of exploiting the linearization
of the observation equations to implement the so-called differ-
ential attitude approach. As for the integration of the geodesics,
this will be formulated in more detail in a forthcoming paper,
but since the motivation and the principle of this approach is
directly linked to the solution method, Sect. 3 will present a line-
of-principle description from the mathematical point of view.

2.6. Instrument parameters

As anticipated in the general overview of Sect. 2, except for the
BAM, Gaia has no onboard metrologic instrument, and a set of
long-term calibration parameters xC has to be introduced among
the unknowns of the global sphere reconstruction. The instru-
ment calibration parameters currently used by GSR are those
described in Lindegren et al. (2012). In this model, like for the
attitude, the calibration is done by a purely numerical description
of the perturbations of the two field angles η and ζ on the focal
plane, respectively in the along- and across-scan direction. The
parameters of this model can be divided in two classes: geomet-
ric and spectrophotometric. In the former the deviations dη and
dζ can be described by geometrical deviations at the level of a
single CCD of the astrometric focal plane from the nominal con-
figurations, namely shifts, shears plus rotations and distortions,
while in the latter magnitude- and spectrum-dependent shifts dη
are introduced.

In practice the AL measurement φ in Eq. (4) is defined as

φ = η ±
Γ

2
, (21)

where Γ is the Basic Angle value (BA) and the sign is positive
when the observation is on the preceeding Field of View (FoV2)
and negative for the following Field of View (FoV1). The cali-
bration model then puts

η = η0 +

2∑
r = 0

∆ηr f n jL∗r (µ̃)+δηnm +Cmag
n (G −Gref)+Csp

f n (ν − νref)

(22)

in which η0 is the nominal AL field angle and ∆ηr f n j, δηnm,
Cmag

n and Csp
f n are the above mentioned calibration unknowns,

namely the AL large and small scale geometric corrections, and
the magnitude- and spectrum-dependent shifts. The indices indi-
cate the dependencies of these parameters with respect to the
instrument configuration.

The large-scale AL parameters ∆ηr f n j depend on the FoV
( f ), the CCD index (n) and have a temporal variation so that
there exists a different set of parameters extending over a certain
time interval, indexed by j. Moreover, the shift, shear plus rota-
tion, and distortion contributions are modeled by different orders
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0 ≤ r ≤ 2 of the Legendre polynomials L∗r (µ̃) computed at the
normalized AC pixel coordinate

µ̃ =
µ − µ0 + 0.5

1966
, (23)

where 14 ≤ µ ≤ 1979 is the pixel coordinate of the measurement
and µ0 = 14 is the pixel coordinate of the beginning of the light
sensitive area of the CCD.

The small scale AL parameters δηnm depend on the CCD
index n and on the AC pixel index m, which goes from 1 + µ0
to pixcols + µ0, where pixcols is the total number of illumi-
nated pixels. The same indexes are used to identify the depen-
dencies of the magnitude- and spectrum-dependent shifts, which
need a reference magnitude and frequency Gref and νref res-
pectively.

Similarly, the AC measurement ζ of Eq. (5) is

ζ = ζ0 +

2∑
r = 0

∆ζr f n jL∗r (µ̃) + δζnm (24)

where it is made evident that in the AC direction only the geo-
metric parameters are taken into account. This calibration model
introduces a degeneracy among the geometric parameters and
the attitude which has to be removed by means of a set of appro-
priate constraint equations.

3. Reconstructing the global astrometric sphere

3.1. The linearized system of equations

The global astrometric sphere reconstruction, in the case of
Gaia, requires the solution of a large, sparse and overdetermined
system of linearized equations in the least-squares sense. Each
observation in fact is represented by a formula either as Eq. (1)
or (2), which ultimately are functions of four types of unknowns,
namely xS, xA, xC, xG, and together these observations produce
a system of equations whose dimension depend on the number
of unknowns nunk and of observations nobs.

In the case of Gaia the total number of unknowns is nunk =
nS + nA + nC + nG, where the number of unknowns for the
sources is nS = 5n∗, n∗ ∼ 108 is the number of primary stars
and nA, nC and nG are the total number of attitude, instrument
and global unknowns respectively. Since generally nG � nC �

nA � n∗, it is reasonable to put nunk . 6n∗. Moreover, we
know that on average each star is observed about 103 times dur-
ing the mission lifetime, so the total number of observations is
nobs ∼ 1011.

Since nobs � nunk the system is not only large but also
overdetermined, so in principle it can be solved in the least
squares sense, providing not only an estimation of the unknowns
but also of their errors and correlations. Furthermore, each equa-
tion represents the observation of a single source in a specific
time interval, therefore it depends only on (up to) 5 source
unknowns and a comparably limited number of attitude and
instrument parameters, which implies the sparseness of the sys-
tem.

Finally, both Eqs. (1) and (2) are highly non-linear in their
unknowns, which would make the solution of the system based
on a maximum likelihood approach numerically intractable.
However an approximate set of values x̄ can be given for all
the parameters, thus the jth AL observation equation can be

linearized around these values

− sin φc
j δφ j '

nS∑
i = 1

∂ fφ (x)

∂xS
i

∣∣∣∣∣∣
x̄

δxS
i +

nA∑
i = 1

∂ fφ (x)

∂xA
i

∣∣∣∣∣∣
x̄
δxA

i +

nC∑
i = 1

∂ fφ (x)

∂xC
i

∣∣∣∣∣∣
x̄

δxC
i +

nG∑
i = 1

∂ fφ (x)

∂xG
i

∣∣∣∣∣∣
x̄

δxG
i (25)

where φc
j = arccos

(
fφ (x̄)

)
, δφ j = φo

j − φ
c
j, δxi = xtrue

i − x̄i, φo
j

is the abscissa of that observation measured by Gaia and xtrue

is the set of unknown true values. A similar expansion can be
written for the across scan measurements, and the problem can
be thus reduced to the solution of a linear system of observation
equations

b = A δx (26)

where b =
{
b j

}T
, j = 1, . . . , nobs, is the vector of the known

terms, δx is the unknown vector and A is the nobs × nunk design
matrix of the system whose coefficients are a ji = (∂ f /∂xi) (x̄).
In the coefficients, obviously, f () = fφ() or f () = fζ() if the
observation is AL or AC respectively. The corresponding generic
known term b j is equal to − sin φc

j δφ j or to cos ζc
j δζ j, and nobs =

nALobs+nACobs, for the number of AL and AC observations nALobs
and nACobs can in general be different4.

The resulting system of equations is intrinsically rank-
deficient when astrometric and attitude parameters have to be
solved at the same time. This well-known issue comes from the
invariance of the solution for a rigid three-components rotation
and three-components spin of the reference system, which in
general requires the introduction of 6 constraint equations (see,
e.g., discussions in de Felice et al. 1998, 2001; Berghea et al.
2016 about the actual need of such a constraint and their pos-
sible implementations.)

In order to take into account measurement errors, which are
different for each observation, a nobs × nobs weight matrix5

W = diag
(
ε0

ε j

)
(27)

is introduced, where ε j is the estimated standard deviation of the
jth observation and ε0 is a reference value, currently assumed to
the estimated uncertainty at magnitude G = 21.5. The system
thus becomes

Wb = (WA) δx. (28)

The solution in the least-squares sense of such system pro-
vides δx̂, namely the best-fit estimation of δx, that is used to
update the catalog values x̄ to the improved estimation of the
true values x̃, that is

xtrue ' x̃ = x̄ + δx̂. (29)

The formal least-squares solution of the system of Eq. (28) is
δx =

[
(WA)T(WA)

]−1
(WA)TWb, where

[
(WA)T(WA)

]−1
is also

the covariance matrix providing the estimation of the variances
and covariances of the unknowns.
4 The actual AL and AC observation equations are δφ j =(
− sin φc

j

)−1 [∑
i a ji δxi

]
and δζ j =

(
cos ζc

j

)−1 [∑
i a ji δxi

]
as this is a more

convenient form for the post-fit analysis of the residuals.
5 In this case, since the measurement errors can be considered inde-
pendent at a first approximation, the weight matrix is the inverse square
root of the covariance matrix of the known-term vector.
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As mentioned in Sect. 2.4, in this version of the pipeline
the relativistic light deflection effect of Solar System objects
different from the Sun is taken into account to improve on the
model accuracy. However, it has to be stressed that this contri-
bution is added only to the known term as a correction to φc

j

(and to ζc
j )

6, and it is not considered in the derivatives. This is
equivalent to a correction to the observations, which are thus
forced to fit more closely the pure Schwarzschild model. The
numerical consequence of this approach will be explained in
Sect. 5.

3.2. Solution of the linearized system of equations

It is known (see e.g. Bombrun et al. 2010 and references therein)
that the computational complexity of the inversion of an N × N
matrix with direct methods is ∝N3. Since the normal matrix ATA
is nunk×nunk with nunk ∼ 6×108, we can immediately realize that
in the Gaia case this problem can be addressed only resorting
to iterative algorithms. A brute-force approach like this, in fact,
would require about 1026 FLOPs a requirement which cannot
be reduced to an acceptable level even taking into account the
sparsity of A.

AGIS uses a block-iterative technique to solve the equation
system (Lindegren et al. 2012) where, in practice, the solution is
obtained by solving separately each block of unknowns (xS, xA,
xC and xG) and iterating the process until convergence (Fig. 5,
left). This allows an implementation as an embarassingly parallel
algorithm, which is strictly needed in the pure Java environment
chosen in this case. On the other hand, the computation of stan-
dard uncertainties, and covariances, of the astrometric parame-
ters requires the inversion of the entire normal matrix, which is
needed to take properly into account the attitude-induced cor-
relations among different sources; since this task is not fea-
sible, one must rely on some approximate covariance model
to estimate such statistical parameters (Holl & Lindegren 2012;
Holl et al. 2012).

Also lead by the initial consideration on the criticality of hav-
ing an independent solution algorithm it was decided to use a
fully iterative method (Fig. 5, right) to guarantee a fully general
convergence mechanism of the complete system, and to allow
a mixed Java/C-C++ coding of the pipeline in order to make
possible the implementation of the needed parallel algorithm.
Such implementation, in fact, is realized by means of a hybrid
MPI/OpenMP parallel solver which runs at the CINECA super-
computing facilities (Bandieramonte et al. 2012; Becciani et al.
2014). GSR therefore implements a customized version of PC-
LSQR (Baur et al. 2008) a conjugate gradient-based algorithm,
originally proposed by Paige & Saunders (1982). As for any iter-
ative algorithm, this is equivalent to computing, at each iteration
(i), an approximate solution

δx(i) = (ATA)−1ATb(i−1) (30)

and then evaluating the vector of the residuals

r(i) = b − A δx(i) (31)

which has to be minimized in the least-squares sense, accord-
ing to suitable convergence conditions defined by the algorithm
itself. Among the possible stopping conditions we have:

6 We remind that φc
j and ζc

j are computed in a purely Schwarzschild
model.

– the vector of the residuals has a 2-norm lower than a thresh-
old value; the LSQR algorithm generates a series of resid-
ual vectors whose norm decreases monotonically; in the
case of a compatible system the series goes to zero, while
for non-compatible systems it converges to a positive finite
limit;

– the 2-norm of ATr(i) (namely the norm of the residuals of
the normal system ATb = ATAδx) is lower than a threshold
value; this is the condition used to guarantee the convergence
of non-compatible systems to a solution in the least-squares
sense; it is worth stressing here that the equation system to
be solved for the global astrometric sphere reconstruction is
non-compatible7, and indeed its solution is obtained in the
least-squares sense, therefore this is the stopping condition
that has to be reached in our case;

– the iterative estimation of the condition number of the matrix
exceeds a given upper threshold;

– a fixed maximum number of iterations is reached.
The choice of the LSQR algorithm is also motivated by the possi-
bility of further enhancing its standard implementation. Indeed,
in its original definition it provides an estimation only of the
diagonal elements of the covariance matrix

(
ATA

)−1
, namely

the variances σδx, but upgrades of this algorithm (see, e.g. Guo
2008; Kostina & Kostyukova 2012) would allow to estimate also
any selected group of its off-diagonal elements, namely the
covariances.

The GSR version of the algorithm uses a preconditioning
technique, which basically consists in a renormalization of the
columns of A, made to improve the convergence speed of the
system. This version, moreover, is tailored on the sphere solu-
tion problem in particular for what concerns the parallelization
algorithm and the memory occupancy. The latter has been opti-
mized with respect to the classic Yale Sparse Matrix Format
(Buluç et al. 2009) exploiting the almost constant number of
non-zero coefficients to eliminate one of the nobs pointer vec-
tor. Regarding the former, instead, the design matrix is built by
sorting the observation by source number. In this way it is pos-
sible to distribute the stars in almost independent subsets on
each Processing Element (PE), in fact the matrix-vector prod-
uct, which is the core of the LSQR algorithm, can be com-
puted by distributing on each PE an equal number nobs/nPE of
the rows of A and of the vector b, and a number 5n∗/nPE of
astrometric unknowns. The other unknowns are then duplicated
on all the PEs making the product almost communication-free
(Bandieramonte et al. 2012).

3.3. Differential attitude and AC observations

Let us say that one has to compute the attitude coefficients of a
generic linearized observation equation. From the above consid-
erations we can formally write

xA =
{
σ1

(
c(1)

0 , . . . , c(1)
N−1

)
, σ2

(
c(2)

0 , . . . , c(2)
N−1

)
, σ3

(
c(3)

0 , . . . , c(3)
N−1

)}
,

(32)

so that in general the catalog attitude is a set of initial values of
the B-Spline expansion coefficients

{
c̄( j)

i

}
. Equation (25) can thus

be written as

7 That is, it has no exact solutions, namely solutions for which r(i) =
0 ∀ i.
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Fig. 5. Schematic representation of the block-iterative procedure used by AGIS (left) and of the fully iterative one used by GSR (right). See the
text for explanation.

− sin φcalc δφ '

nS∑
i = 1

∂ fφ (x)

∂xS
i
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xS

0

δxS
i +

3∑
j = 1

∂ fφ (x)
∂σ j

∣∣∣∣∣∣
σ̄ j

δσ j+

nC∑
i = 1

∂ fφ (x)

∂xC
i

∣∣∣∣∣∣
x̄

δxC
i +

nG∑
i = 1

∂ fφ (x)

∂xG
i

∣∣∣∣∣∣
x̄

δxG
i

=

nS∑
i = 1

∂ fφ (x)

∂xS
i

∣∣∣∣∣∣
xS

0

δxS
i +

3∑
j = 1

N−1∑
i = 0

∂ fφ (x)
∂σ j

∂σ j

∂c( j)
i

∣∣∣∣∣∣∣
c̄( j)

i

δc( j)
i

nC∑
i = 1

∂ fφ (x)

∂xC
i

∣∣∣∣∣∣
x̄

δxC
i +

nG∑
i = 1

∂ fφ (x)

∂xG
i

∣∣∣∣∣∣
x̄

δxG
i

=

nS∑
i = 1

∂ fφ (x)

∂xS
i

∣∣∣∣∣∣
xS

0

δxS
i +

3∑
j = 1

N−1∑
i = 0

∂ fφ (x)
∂σ j

∣∣∣∣∣∣
σ̄ j

Bi (t) δc( j)
i

nC∑
i = 1

∂ fφ (x)

∂xC
i

∣∣∣∣∣∣
x̄

δxC
i +

nG∑
i = 1

∂ fφ (x)

∂xG
i

∣∣∣∣∣∣
x̄

δxG
i (33)

in which we have exploited the fact that

dσ j (t) =

N−1∑
i = 0

∂σ j

∂c( j)
i

dc( j)
i (34)

and that, from Eq. (18),

∂σ j

∂c( j)
i

= Bi (t) . (35)

In this way the updated attitude at a generic time t is

σ j(t) =

N−1∑
i = 0

(
c̄( j)

i + δc( j)
i

)
Bi (t) . (36)

It should be observed, however, that in Eq. (33) ∂ fφ (x) /∂σ j
does not depend on the representation of dσ j: it just needs a (cat-
alog) value for the attitude parameter σ̄ j ≡ σ̄ j (t) at the observa-
tion time t. We can therefore decide to compute this σ j using an

expansion which, in principle, may have nothing to do with the
one used to represent dσ j since our only necessity is to have a
way to evaluate σ̄ j (t). In formulae, we could write at any time
σ j(t) = σ̄ j (t) + dσ j (t) where

σ̄ j (t) =

NC−1∑
m = 0

c( j)
m,CBm (t) (37)

dσ j (t) =

NU−1∑
i = 0

c( j)
i,UBi (t) (38)

are the catalog attitude and its update, exactly as in our original
scenario, but expanded over two different supports

{
τm,C

}
, m =

0, . . . ,NC and
{
τi,U

}
, i = 0, . . . ,NU. Moreover, since the catalog

attitude has to represent the starting point for the unknowns, we
should have initially dσ j (t) = 0, that is c( j)

i,U = 0, so that in the

end c( j)
i,U = δc( j)

i,U, and therefore the updated attitude is computed
at any time t simply by summing the catalog and the differential
attitude dσ at the same time:

σ j(t) = σ̄ j (t) + dσ j (t) (39)

=

NC−1∑
m = 0

c( j)
m,CBm (t) +

NU−1∑
i = 0

δc( j)
i,UBi (t) . (40)

This facilitates the choice of the knot support in the computa-
tion of the coefficients and makes the calculation of the latter
much faster. The placement of the knots, in fact, has to guar-
antee that each attitude parameter can be solved, a condition
that can be met basically by allowing a sufficient number of
observations between each pair of consecutive knots. There are,
however, several reasons which could require to drop some
observations after the computation of the matrix coefficients,
thus inducing a rearrangement of the knot sequence; in the non-
differential approach, such rearrangement would entail a recal-
culation of all the coefficients, while in the differential approach
the latter must be computed only once, with the exception of the
Bi (t) polynomials for the differential knot sequence.
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Fig. 6. Schematic representation of the AVU/GSR pipeline.

One last point of the Gaia attitude reconstruction has to be
stressed. Given the three coefficients C( j)

k , j = 1, 2, 3 relative to
the k-th unknown of each Rodrigues parameter σ j

8, their ratios
R(i, j)

k = C(i)
k /C

( j)
k do not depend from the B-spline base func-

tion Bk (t). As a consequence, whatever the time dependence of
two coefficients, one can always find a small time separation
δt = t2 − t1 between two observations at t1 and t2 respectively
which is short enough to keep R(i, j)

k almost constant between t1
and t2. As pointed out above, this “constancy” in principle does
not depend on the explicit formulation of the coefficients, since it
is sufficient to have time-dependent expressions repeating them-
selves along all the observations, however it is easy to understand
that the slower the time variation, the longer this time interval
can be kept. Therefore the independence of the ratios from Bk (t)
contributes to increase the amount of time over which the R(i, j)

k
remain almost the same among the different observations or,
equivalently, over which the proportionality C(1)

k ∝ C(2)
k ∝ C(3)

k
holds approximately for each index k.

Since each of these values is represented into a different col-
umn of the system of equations, this quasi-proportionality pro-
duces an extremely ill-conditioned design matrix. Such an ill-
conditioning problem is solved by introducing the AC observa-
tions. This problem will be discussed in more detail in a forth-
coming publication (Vecchiato et al., in prep.).

4. The AVU/GSR pipeline

4.1. The overall pipeline schema

As mentioned in Sect. 1 the algorithms described so far have
been implemented in the GSR pipeline, which operates in the
context of the Astrometric Verification Unit of the DPAC. A
detailed description of such pipeline is out of the scope of this
paper, and more details can be found in Vecchiato et al. (2012)

8 The considerations we are writing for the MRP are valid for any rep-
resentation which is expanded in B-Splines series.

and in a forthcoming publication (Messineo et al., in prep.). Here
we will thus give a synthetic summary of its main characteristics.

The GSR pipeline is composed of several scientific mod-
ules, called in sequence by the infrastructure software, which
provides the overall workflow and the DB interaction function-
alities (Fig. 6). In essence, GSR gets the AGIS solution and its
corresponding input data. The latter are used to produce an inde-
pendent sphere solution which is then compared to that of AGIS.
The results of the comparison, as outcomes of statistical tests and
graphics, are sent to the Gaia Main DataBase (MDB). Alerts are
also foreseen if the comparison bears evidence of statistically
significant differences between the two solutions.

All the scientific modules can be grouped in three main
types:

– The “Pre-solver” modules, which implements the computa-
tion of the system coefficients and known terms according to
the guidelines sketched in the Sects. 2 and 3.

– The “Solver” module, which computes the system solutions
as described in Sect. 3.

– The “Post-solver” modules, performs all the successive oper-
ations from the catalog update to the comparison between the
AGIS and GSR solutions summarized in Sect. 4.2.

As anticipated, all the modules are written in Java and run at the
DPCT-ALTEC, with the exception of the Solver module which
is written in C/C++ and runs at the DPCT-CINECA. The latter
simply receives the coefficients and known terms for the sys-
tem from ALTEC and sends back there the system solution. The
pipeline concludes with the production of a report which con-
tains all the relevant information needed to give a first evaluation
of the results.

4.2. Post-Solver GSR pipeline modules

As mentioned above, GSR has to compare its results with the
AGIS solution and to provide an evaluation of the differences
between the two spheres. In particular, it is foreseen that pos-
sible differences larger than the expected accuracy of Gaia are
investigated to assess the scientific reliability of the result.

As pointed out in Sect. 3 the sphere reconstruction problem
is intrinsically rank-deficient, and as a minimum it can be solved
except for a six-parameters transformation representing a rigid
rotation and a spin difference of the reference system. In the
equation system solved by GSR, these can be directly included
as additional constraint equations, equivalent to the choice of a
specific (and arbitrary) reference system which, in general, is dif-
ferent from that of the AGIS solution. It is therefore necessary to
de-rotate one solution, that is to bring both catalogs into a com-
mon reference system, before attempting a comparison between
them. Moreover, both the de-rotation and comparison procedures
are done on catalogs referring to the purely spatial hypersurface
of the same observer, therefore there is no need to resort to Gen-
eral Relativity here. The algorithms are least-squares reconstruc-
tions of purely Euclidean transformations and statistical analysis
of coordinate differences.

GSR can use standard statistical algorithms, like χ2 tests
and Kolmogorov-Smirnov, to analyze the differences between
the AGIS and GSR global astrometric sphere solutions. In addi-
tion to these, a powerful method in this context is provided by
the use of a decomposition in Scalar and Vector Spherical Har-
monics (VSH, see e.g. Hill 1954; Arfken & Weber 2012) as base
functions to model the vector field of GSR/AGIS residuals as a
series expansion, up to a suitable degree, whose coefficients can
be either estimated by a standard least-squares fit or computed
analytically, whenever appropriate. Once the significance of the
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various coefficients associated to each VSH degree is positively
tested, the latter quantify the presence of a systematic error in
the residuals at scale lengths of the order of 180/l deg, where l
is the corresponding VSH degree, therefore their nature must be
addressed.

This last algorithm is the most computationally-intensive, so
its implementation is the only one besides the system solution
that can require a non-embarrassingly parallel coding (to be exe-
cuted at the DPCT-CINECA) in case a decomposition of order
lmax & 100 is required. The details of the algorithms can be
found in Bucciarelli et al. (2011a,b) and in a forthcoming paper
(Bucciarelli et al., in prep.), which also contains a characteriza-
tion of the VSH accuracy for the Gaia case.

5. Demonstration runs on simulated data

5.1. General considerations

Similarly to what was done for AGIS (Lindegren et al. 2012), the
accuracy of the AVU/GSR pipeline has to be verified before this
software system enters operations. The general agreement was
that GSR had to perform a “Demonstration Run test”, showing
its ability to reproduce the AGIS results at a comparable accu-
racy level on simulated data similar to those used in the cited
paper. For that purpose, the GSR demonstration run was split
into two different tests:
Test 1: solve the GSR astrometric sphere with perturbed Source

(S), Attitude (A) and Calibration (C) parameters and
noise-free observations. The aim is to give a precise
assessment of the numerical accuracy of the AVU/GSR
pipeline and of the GSR2 astrometric model.

Test 2: solve the GSR astrometric sphere with perturbed S, A
and C parameters and noisy observations, similarly to
what was done for AGIS (see the cited paper above). The
goal is reproducing the AGIS results at the appropriate
accuracy.

Following the methodology adopted in the AGIS paper, the per-
turbations of the source and attitude parameters are Gaussian,
while the system starts from true values for the instrument (cal-
ibration parameters). Moreover, a long-period modulation of the
BA is injected in the known terms (observations) and recon-
structed by means of the L0 large-scale AL Instrument param-
eters (∆η) at the sub-µas level. The instrument model is used
only in this scope.

As shown in Sect. 3, the global astrometric sphere recon-
struction, in the case of Gaia, requires the solution in the least-
squares sense of a large, sparse and overdetermined system of
linearized equations. In GSR the resulting linear equation sys-
tem is solved in full by utilizing a parallelized implementation
of the LSQR algorithm. Provided that the starting values are
sufficiently close to the true ones the system converges to its
best possible least-squares solution, a statement which has to
be intended in comparison with the block-iterative algorithm
adopted by AGIS.

This simple framework is complicated by the discrepancy
between the astrometric accuracy of the two relativistic mod-
els implemented in AGIS and the current GSR. AGIS imple-
ments the GREM astrometric model, which is accurate to the
(ν/c)3 order needed to match the Gaia mission final accuracy,
and the simulated data are generated with the same astrometric
model. The current GSR, instead, uses a model of the RAMOD
family whose (ν/c)2 PPN-Schwarzschild metric, as explained in
Sect. 2.4, is improved in accuracy by an approximate estimation

of the contributions of the planets of the solar system and of the
Moon, which are subtracted from the known terms.

This technique, however, cannot model at the required level
of accuracy the observation equation of this intrinsically non-
Schwarzschild problem. The accuracy of the GSR2 astromet-
ric model, therefore, does not match that of the simulated data
everywhere on the sky, and leaves unmodeled some effects at the
order of the first derivative of the observable, that enter directly
in the sphere reconstruction problem. Furthermore, and more
importantly, it does not cope with the final accuracy expected
for Gaia, especially at the bright end of the magnitude range.
This approximate approach could be further improved, but at the
price of a considerable mathematical complication, an effort that
in any case would not be able to ensure a perfect match in terms
of model accuracy.

On the other hand, it is still possible to reach (almost) the
same results of the AGIS demonstration run by minimizing
the impact of these modeling issues by, firstly, dropping obser-
vations too close to the planets and the Moon, and secondly,
starting as close as possible to the true values. The second
requirement can be met with an ad-hoc procedure, adopted for
both tests constituting the demonstration run, that consists of
three steps:
1. The first is a regular run of the GSR pipeline starting from

input values comparable to those of AGIS.
2. The second starts from the same input values, but uses the

BA reconstruction of the first step to remove the modulation
from the known terms.

3. The third and final step is another run of the GSR pipeline in
which the input attitude is the same as that in step 1, while
the input values for the astrometric parameters are those of
the solution of step 2 (the step 2 residual BA modulation is
also subtracted from the known term as before).

We stress that, as long as we consider the simulated data a faith-
ful reproduction of reality, the adopted procedure is not moti-
vated just by the accuracy mismatch between the two astrometric
models, but also by that between the accuracy of the RAMOD
model and that of the Gaia measurements. Moreover, the third
step takes into account the residual model-induced inaccuracy
of the first order derivatives of the observable and for this reason
we dub it “external iteration”, or EI run.

Indeed, it is worth noticing that this run might look like the
so-called iteration for non-linearity, but it has actually another
meaning. Indeed, the former is a standard procedure used when
the input values are so approximate that the second order effects
neglected in the linearized problems are still significantly large
with respect to the measurement accuracy. Our EI, instead, is a
numerical procedure that takes into account a first-order mod-
elling accuracy issue. In short, it comes from the fact, already
mentioned in Sect. 3.1, that it was chosen to model the effects
of the planets only for the known terms, not including them in
the coefficients of the linearized observation equation. This was
done for practical reasons, and a detailed explanation, which
would be too long and out of scope here, will be provided in
a forthcoming paper (Vecchiato et al., in prep.). In this respect,
when the current model will be replaced by a full-accuracy astro-
metric model (Crosta et al. 2017; Bertone et al. 2017) this ad-
hoc procedure will become unnecessary. GSR, in fact, will have
the same sensibility of AGIS to modelling errors and will match
the Gaia measurement accuracy, so in principle it will be able to
reach the required accuracy just after the first step.

The dataset utilized in these tests provides the true Gaia AL
and AC measurements, which are computed from the coordi-
nates of the simulated objects, the ephemerides of the planets and
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of the satellite, the NSL, and from the unperturbed instrument
parameters using the implementation of the GREM model avail-
able when this dataset was produced. In comparing the results
of our tests with those of AGIS, it should be considered that
the former used a dataset containing 908 979 primary sources
in the magnitude range 5.79 < G < 20.00, while AGIS, in
its demonstration run, could use another version of the same
dataset, not available anymore, that had more than 2 million pri-
maries (Lindegren et al. 2012).

The perturbed values needed for the tests are generated with
two different procedures for the sources and the attitude. The
source parameters are perturbed with a Gaussian noise with
zero average and a standard deviation of 20 mas for positions
and annual proper motions. Moreover, negative parallaxes are
not admitted, and when a random extraction produces a nega-
tive value, it is set to $ = 10−6 mas ' 4.8 × 10−15 rad9. The
starting attitude values, instead, are obtained by perturbing the
coefficients of the B-splines fit of the NSL (true attitude), with
a Gaussian noise that produces a difference of about 10 mas
between the true and perturbed orientations of the attitude axes.
The initial separation between two successive nodes of the knot
sequence is set to 240 s.

In test 2, the one with noisy observations, the perturbed
observations are obtained by adding a Gaussian measurement
noise to the true measured values. All the information needed
to compute the latter are contained in the simulated dataset. The
Gaussian perturbation, instead, is computed by generating a ran-
dom extraction for each observation from a Gaussian distribution
centered in zero and having a standard deviation corresponding
to the observational error. This depends on the magnitude of the
observed star, and it is obtained using the DPAC routines that
implement the nominal AL/AC single-measurement error.

A star is declared solvable (for all of the 5 astrometric param-
eters) if it has at least 180 AF along-scan observations, and, at
the same time, the difference between the observation times of
its first and last observation is at least 1.5 years.

An important part of the coefficients module is the Attitude
Definition Chain (ADC). The task of this piece of software is
the definition of the knot sequence of the attitude, whose basic
nominal separation can be adjusted to fit some constraints. Basi-
cally, there must be at least 20 observations between two adja-
cent knots, and the interval can be stretched up to four times
the initial knot separation, namely 960 s. If after this time the
minimum number of observations has not been reached yet, the
B-spline sequence is segmented, thus a discontinuity in the atti-
tude reconstruction is introduced.

The convergence condition of the LSQR algorithm are set to
the most stringent requirement, namely to the machine precision
accuracy. This condition is overridden if the estimated condition
number of the system exceeds 1013, the number of iterations is
larger than 50 000, or if the solver runs for more than 120 h. The
preconditioning of the equation system is activated (to speed up
convergence), and the six constraint equations needed to fix the
intrinsic rank deficiency of the system are computed from the
catalog values of “one-and-a-half stars”. Namely, we first select
all stellar pairs according to the following geometric criteria:∣∣∣δ1,2

∣∣∣ < 5 deg (41)

90 − 5 deg < |α2 − α1| < 90 + 5 deg. (42)

9 This is just a practical recipe to obtain sensible values for known
terms and coefficients in the GSR formulae. After a solution is
found, both positive and negative values are admitted for the updated
parallaxes.

Final choice is done by choosing the brightest two among the
above pairs, and the constraint equations are built by fixing α, δ,
µα and µδ of the brightest and δ and µδ of the second brightest10.

5.2. Test 1: accuracy assessment with noise-free
observations

The GSR pipeline filters out 460 primary sources that cannot
be solved because they do not fit the minimum requirements
explained in the previous section. Therefore, this leaves a sys-
tem with 908 519 primaries and 660 599 degrees of freedom for
the knot sequence. The attitude is represented in terms of MRP
which implies that we have just 3 independent unknowns per
knot, instead of the 4 constrained ones of the quaternion repre-
sentation. In addition, the large scale instrument parameters that
are estimated in the solution are associated to a total of 63 CCDs,
each varying with a time scale of one month.

In this representation, therefore, the number of astromet-
ric unknowns is 4 542 595, that of the attitude is 1 981 797,
and finally, the number of AL and AC (large scale) instrument
parameters is 45 360. The linearized system of equations is thus
described by a design matrix of 6 569 752 columns (unknowns)
and 1 330 628 523 rows (observations). In each of the three steps
of this test, the solver converged to the machine-precision least-
squares solution in something less than 20 000 iterations, with a
condition number of ∼106 (Fig. 7).

Astrometric parameters. The first-step solution of the test
reflects the effects of the mismodelling on the accuracy level
attainable with the relativistic model implemented in GSR2,
called RAMOD2d. The solution shows how this model, at first,
reaches a systematic floor of ∼10 µas that, as expected given
the noise-free observations, is independent from the magnitude
range of the stars.

The second step provides a solution similar to the previous
one because it starts from the same input catalog. Nonetheless,
in this intermediate passage the BA modulation is removed from
the measurements using its reconstruction from the first step.
Although statistically similar to the previous one, in this way one
obtains a better starting point for the final step. Indeed, jumping
directly from the first to the third step, namely using the solution
obtained without this “preemptive cleaning” of the known terms,
would result in a less accurate final solution.

The third step, finally, gives the confirmation that the errors
previously obtained are really the effect of modelling errors, since
in this case the results are at the sub-µas level or better, as expected.
This is also a confirmation that the adopted special procedure is
able to recover the AGIS numerical accuracy, which implies that
the same expectations have to apply to the second test.

Table 1 reports the results of the first and third steps. The
second step is not reported because of the negligible statistical
differences with respect to the first one. Following the method-
ology of Lindegren et al. (2012) we adopted the Robust Scatter
Estimation (RSE11) as a measure of the errors of the solution
with respect to the true simulated values. It is worth noting that
the medians of the parallaxes of the third step are one order
of magnitude larger than those of the other unknowns. This
residual noise can be neglected, as it is safely below the Gaia

10 It is worth stressing that, in principle, the LSQR algorithm does not
necessarily need any constraint equations to converge to one of the least-
squares solution of the system. In this case, however, the convergence
would be much slower.
11 The RSE is defined as 0.390152 times the difference between the
90th and 10th percentiles of the dataset. For a Gaussian distribution it
coincides with the standard deviation.
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Fig. 7. Convergence plots of the first and third step. The LSQR algorithm implementation monitors the convergence status of the solution by
computing two parameters, the 2-norm of the residuals vector (||r|| ≡ ||Ax − b||), and the 2-norm ||AT r|| (dashed and solid lines respectively). As
mentioned in Sect. 3.2, convergence to the unique least-squares solution is confirmed by the fact that the LSQR estimation of ||AT r|| is zero within
the machine-precision accuracy.

Table 1. Astrometric results (estimated minus true) for test 1.

Magnitude range Step Median RSE

$ α∗ δ µα∗ µδ $ α∗ δ µα∗ µδ

G < 13 1 −0.78 4.09 1.40 4.61 −1.00 2.79 10.03 7.00 12.93 5.26
3 0.22 0.01 0.07 0.00 0.02 0.17 0.38 0.49 0.10 0.10

13 ≤ G < 15 1 −0.76 3.68 1.41 4.61 −1.16 3.08 9.63 6.66 11.79 4.62
3 0.22 0.01 0.05 0.01 0.03 0.17 0.21 0.29 0.09 0.09

15 ≤ G < 16 1 −0.67 3.42 1.26 4.51 −1.32 3.32 9.76 6.55 12.09 4.27
3 0.24 0.01 0.05 0.01 0.03 0.17 0.18 0.22 0.08 0.09

16 ≤ G < 17 1 −0.60 3.38 1.16 4.59 −1.36 3.37 9.95 6.33 11.76 4.14
3 0.25 0.01 0.04 0.01 0.03 0.16 0.17 0.19 0.08 0.09

17 ≤ G < 18 1 −0.53 3.25 1.09 4.57 −1.40 3.37 10.12 6.16 11.59 4.04
3 0.26 0.00 0.04 0.01 0.03 0.16 0.16 0.16 0.08 0.09

18 ≤ G < 19 1 −0.42 3.10 0.90 4.56 −1.50 3.49 10.22 6.02 11.46 3.84
3 0.27 0.00 0.04 0.01 0.04 0.16 0.15 0.15 0.08 0.08

19 ≤ G 1 −0.18 3.01 0.52 4.65 −1.63 3.59 10.40 5.68 11.62 3.59
3 0.29 0.00 0.04 0.01 0.04 0.16 0.15 0.14 0.08 0.08

Notes. Units are in µas for parallaxes and positions and µas yr−1 for proper motions. Right ascension and the corresponding proper motion are
provided as α∗ = α cos δ and µα∗ = µα cos δ.

level of accuracy. Since preliminary results have shown that with
the implementation of a full-accuracy astrometric model this fea-
ture disappears (Bertone et al. 2017), it can be attributed to a
residual effect of the accuracy of the GSR astrometric model.

The all-sky plots of the astrometric solution for the third step
are shown in Fig. 8. It is worth discussing in more detail the
residual differences of these parameters. In general the largest
differences show up close to the ecliptic, which is consistent
with the fact that the lack of accuracy of RAMOD2d is basi-
cally due to imperfect modeling of the planets’ contribution to
the null geodesic. Such discrepancy can be seen, in a plot of the
GREM vs. RAMOD differences between the measurements, as
a sign flip when the observing direction crosses the position of a
planet. This sign flip translates in a corresponding sign flip of the
astrometric parameters. Since the planets move along the eclip-
tic, this systematic effect is smoothed out along this plane, and
we only see the sign flip in the orthogonal direction.
Attitude parameters. Similar considerations hold for the attitude
parameters, as shown in Table 2, where the numbers give the

residual rotations around the three axes in µas. It is interesting
to notice a residual, µas-level average for the e2 axis which, as
in the case of the parallaxes, is linked to the accuracy of the
astrometric model.
Reconstruction of the basic angle modulation. Figure 9 shows
the results of the BA modulation reconstruction for FoV1
as obtained from the L0 (shift) ∆η large scale instrument
parameters. Those of FoV2 are exactly antisymmetric. The resid-
uals are at the sub-sub-µas level (with average −0.0016 µas and
standard deviation 0.015 µas for FoV1 and 0.0014 µas and stan-
dard deviation 0.015 µas for FoV2).

5.3. Test 2: realistic solution with noisy observations

As for the previous test, the GSR pipeline filters out 460 stars
that cannot be solved because of the requirements explained in
the previous section. This leaves a system with 908 519 stars and
just a slightly different number (660 594) of degrees of freedom
for the attitude. The large scale instrument parameters that are
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Fig. 8. All-sky map of the astrometric residual differences (in µas or µas yr−1) for the noise-free GSR solution after the third step.

Table 2. Attitude results (in µas) for test 1.

e1 e2 e3

1st step Average 0.06 −1.19 0.41
RSE 8.88 12.63 7.93

3rd step Average 0.00 −1.14 0.02
RSE 1.11 1.05 0.25

estimated in the solution are associated to the same total num-
ber of 63 CCDs, each varying with a time scale of one month.
The number of astrometric unknowns is therefore 4 542 595, that
of the attitude parameters is 1 981 782, and nothing changes for
the instrument parameters (they are 45 360 as before). The sys-
tem is thus described by a design matrix of 6 569 737 columns

(unknowns) and 1 330 628 449 rows (observations). In each of the
three steps of the demonstration run the solver converged to the
machine-precision least-squares solution in something less than
42 000 iterations, with a condition number of ∼106 (Fig. 10).
Astrometric parameters. Table 3 reports, for each magnitude
class, the median and the RSE for steps 1 and 3 of the GSR runs,
as well as the corresponding results of the AGIS demonstration
run.

As anticipated above, the first step produces an improved
astrometric catalog, which however is still affected by system-
atics; µas-level medians and ratios of the $ errors to those of
the other astrometric unknowns different from expectations are
the numerical signatures of such systematics. In particular, it
is known from both theoretical analysis and numerical simula-
tions that the scanning law of Gaia should produce well-defined
values for these ratios, specifically,
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Reconstruction of BA modulation in test 1

Fig. 9. Test 1 BA reconstruction for FoV1. That of FoV2 is not reported
as it is the same with the opposite sign. The blue line represents the true
modulation signal, while the red dots, which use the scale on the right
side of the plot, are the differences between such signal and the final
reconstruction after the three steps.

r̄α∗ ≡
σα∗

σ$
= 0.787, (43)

and similarly r̄δ = 0.699, r̄µα∗ = 0.556, r̄µδ = 0.49612.
These approximate estimations can thus be used as an additional
check for the solutions, and the results from Table 3 show that
the actual ratios are close to the expected values, and similar
between them, for AGIS and for the step 3 of the GSR solution,
whereas this is not the case for the step 1.

For test 2, the all-sky map plots do not show the systemat-
ics of the previous test. Indeed, in this test the remaining sub-
µas systematic errors visible in the previous plots are completely
negligible with respect to the Gaussian ones, which distribute
uniformly on the sky. The plots for all the unknowns are quite
similar, so in Fig. 11 we just show the case of the parallaxes,
where the all-sky map is paired with the histogram of the nor-
malized astrometric errors obtained by combining the data from
each magnitude class. These data show that the solution of the
third step, eventually, recovers the remaining modelling residu-
als, and that with this ad-hoc procedure GSR is able to recover an
astrometric solution comparable to that of AGIS at the sub-µas
level even with a less accurate astrometric model.
Attitude parameters. Similarly, we report in Table 4 the results
for the attitude solutions from the first and third step of GSR, and
those of AGIS. The numbers give the residual rotations around
each axis in µas. The last column reports the ratio between the
residual errors of e2 and e1 (y and x axes respectively), which
from the geometry of the observations should be 1.34.

While the final accuracy of the astrometric parameters
mostly depends on the number of observations per star, that
of the attitude strongly depends on the total number of obser-
vations, and therefore on the number of stars involved in the
sphere reconstruction and their magnitude. For this reason GSR,
with 908 000 stars, cannot reach the same accuracy obtained by
AGIS with about 2 300 000 stars. The degradation factor must be
close to 1.6, which compares well to the 1.8 obtained in this test.
Finally, Fig. 12 shows the histograms of the attitude errors for
the x, y and z axes.
Reconstruction of the basic angle modulation. Figure 13
shows the results of the BA modulation reconstruction for
FoV1 as obtained from the L0 ∆η large scale instrument param-
eters. Those of FoV2 are exactly antisymmetric. As in the

12 https://www.cosmos.esa.int/web/gaia/
science-performance

case of AGIS, the errors are at the sub-µas level (with aver-
age −0.053 µas and standard deviation 0.357 µas for FoV1 and
−0.047 µas and standard deviation 0.361 µas for FoV2).
Observations’ residuals. The solution obtained after the third
step is used to compute the AL and AC residuals of the con-
dition equations. As long as the solution is close to the true
values, the standard deviation of the distribution of the resid-
uals for each star should approach the Gaussian noise used to
simulate the measurement error. Table 5 reports such residuals
for each magnitude class, along with the single-measurement
error approximate values for the simulated data estimated with
the ad-hoc empirical formulae used for Fig. 1. It has to be
stressed that the values obtained with the empirical formulae
are computed under the hypothesis of a Gaussian distribution
with zero average for any object. For the actual residuals, the
least-squares solution implies a close-to-zero average for the
complete system only, and nothing can be said in general for
subsets of observation equations. This means that the AL and
AC residuals of each star will be generally distributed around
a non-zero average, therefore the estimation by the empiri-
cal formula binned by magnitude class is likely to underesti-
mate the real case, which is exactly what we observe in the
table.

On the other hand, as we have anticipated above, we have to
expect close-to-zero residuals for the complete system we actu-
ally solved (in the least-squares sense) that is the one weighted
by the measurement errors via the weight matrix W, WAx = Wb.
For this system we have to expect that 〈W(Ax − b)〉 ' 0. The
actual result in this case is −0.50 µas, which is again at the sub-
µas level as expected from the accuracy of the solution as com-
pared to the true values.

6. Current status and future developments

Work is currently ongoing to further develop the AVU/GSR
pipeline. In the following we detail the main issues that are going
to be addressed in future developments.

6.1. Convergence speed and variance estimation.

As shown in the previous section, the number of iterations
needed to reach a complete convergence can be very different for
different situations. It is well known that such variation depends
on the number of unknowns of the problem, however experience
is showing, as it is clear already from the results of Test 1 and
Test 2, that other factors can have a strong influence on the con-
vergence speed. For example, this demonstration run used the
Calibration parameters only to estimate a very specific signal
injected in the BA, but it is expected that, when the full instru-
ment model will be adopted, an even larger number of iterations
will be needed to reach the convergence. It would be obviously
an advantage to minimize such number.

One possibility is to use different kind of astrometric con-
straints. The full astrometric problem, unlike that represented by
the AGIS approach, is intrinsically ill-conditioned, and its solu-
tion requires the introduction of six constraint equations that fix
the orientation of the reference system for the positions and the
proper motions. As explained in Sect. 5, currently GSR imple-
ments such equations by constraining the values of one-and-
a-half stars, but other criteria are applicable. For example, it
is possible to compute six “barycentric constraints” using the
values of an arbitrary selection of stars. The determination of
such constraints with a large set of stars usually reduces the iter-
ations needed for the convergence.
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Fig. 10. Convergence plots of the first and third step of test 2.

Table 3. Astrometric results (estimated minus true) for test 2.

Magnitude range Step Median RSE

$ α∗ δ µα∗ µδ $ α∗ δ µα∗ µδ

G < 13 1 −0.9 3.1 1.8 3.7 −0.8 8.5 13.1 9.8 14.2 7.6
3 0.2 −0.3 0.1 −0.4 0.1 7.9 7.0 6.2 4.9 4.4

AGIS – – – – – 7.5 6.6 5.7 4.5 4.0
13 ≤ G < 15 1 −0.9 2.3 2.4 3.1 −0.8 14.8 17.0 13.4 16.4 10.4

3 0.0 −0.3 0.1 −0.3 0.0 14.4 11.8 10.5 8.4 7.4
AGIS – – – – – 14.9 12.4 10.6 8.7 7.5

15 ≤ G < 16 1 −0.9 1.3 3.0 2.3 −0.7 25.3 24.6 20.2 21.7 15.0
3 0.1 −0.5 0.1 −0.4 0.0 25.1 20.2 17.9 14.2 12.6

AGIS – – – – – 24.9 20.2 17.3 14.3 12.3
16 ≤ G < 17 1 −1.0 0.7 3.1 1.8 −0.4 40.2 35.2 29.7 29.0 21.8

3 −0.2 −0.6 0.0 −0.3 0.1 40.0 31.9 27.7 22.5 19.7
AGIS – – – – – 38.4 30.8 26.7 21.8 19.0

17 ≤ G < 18 1 −1.0 0.1 3.6 1.2 −0.1 65.5 54.6 46.0 41.9 33.5
3 −0.2 −0.4 0.1 −0.1 −0.1 65.4 52.4 44.9 36.7 32.0

AGIS – – – – – 61.8 49.4 42.8 34.8 30.4
18 ≤ G < 19 1 −0.9 0.1 3.9 0.5 −0.2 110.8 90.3 76.1 65.7 54.8

3 −0.1 0.1 0.6 −0.1 −0.2 110.8 89.0 75.4 62.4 53.8
AGIS – – – – – 104.1 83.3 70.7 58.9 50.8

19 ≤ G 1 −0.2 −0.3 2.8 0.1 −0.4 199.7 161.5 134.3 115.3 95.8
3 0.3 0.4 −0.3 0.1 −0.5 199.5 160.8 134.0 113.6 95.4

AGIS – – – – – 207.6 167.9 140.0 118.5 100.2

Notes. Units are in µas for parallaxes and positions and µas yr−1 for proper motions. Right ascension and the corresponding proper motion are
provided as α∗ = α cos δ and µα∗ = µα cos δ. The RSEs of the AGIS demonstration run as reported in Lindegren et al. (2012) are shown for an
easier comparison.

Another possibility is simply to relax the convergence con-
ditions. In order to guarantee the best possible solution from
a purely numerical point of view, it was decided to set the
convergence requirement to the most stringent value, that is to
machine-precision level. However, it has been noticed that the
solution δx stabilizes before the convergence parameters reach
such level, and it was verified that setting it, for example, to
the less demanding value of ∼10−13 would have produced an
equivalent δx with a significantly reduced number of iterations.
On the other hand, there is no obvious way to link the stabil-
ity of the solution at the required numerical accuracy with the
numerical value of ||ATr||, namely the residuals of the normal
system that is used to estimate the convergence status of non-
compatible systems. A possible practical solution is to check at

regular intervals whether the variation of the solution falls below
a given threshold. Technically, this option is easy to implement,
since it can take advantage of a feature of our customized imple-
mentation of the LSQR algorithm, which produces intermediate
solutions at regular intervals of iterations. Another option for the
threshold value of the convergence condition is ||A − Ā||/||A||, as
suggested in Paige & Saunders (1982), in which Ā are the true
values of the coefficients’ matrix and the numerator can be esti-
mated by knowing the uncertainties of the catalog values. Both
these options, however, require further study to assess the relia-
bility of the results obtained in this way. A drastic improvement
in this respect, however, might have an undesired consequence.

Actually, it is also known that initially the LSQR algorithm
underestimates the variances of the solution, and that such esti-
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Fig. 11. All-sky map and normalized histogram of the parallax astrometric residual differences for the GSR solution after the third step. Units of
the all-sky map are µas.

mation improves with the number of iterations. A careful trade-
off is therefore needed to get the fastest possible convergence
without hampering the variances estimation or, in alternative,
one might decide to resort to other approximate methods to esti-
mate the latter. The GSR implementation of the LSQR algorithm
always provides the variances along with the solution, but cur-
rently the former are used just for a first rough estimation of the
quality of the solution. Further work is needed to assess the reli-
ability of the variances estimation.

6.2. BA fit and calibration model.

As remembered in Sect. 2, the daily calibration does not guar-
antee a reconstruction of the instrument parameters at the final
accuracy level required by the sphere reconstruction. Additional
calibration parameters are thus added to the observation equa-
tions in order to recover any remaining un-calibrated residuals.
However, the instrument model currently implemented in GSR
is still inadequate to obtain a sphere solution coping with the
accuracy goal of the Gaia catalog. Current work on real data is
aimed at determining the improvements to the present instrument
model needed to reach such an accuracy.

A similar reasoning has to be applied for the BA. The BAM
pipeline(s) provides a daily reconstruction of the BA Varia-
tion (BAV), and it is likely that a cyclic reprocessing of these
data can improve this reconstruction by providing a calibrated
estimation of such variations. It is nonetheless appropriate to
introduce further BA Correction (BAC) components in the
observation equations to take into account a possible residual
signal (Lindegren et al. 2018).

6.3. Comparison analysis

As described in Sect. 4.2, the GSR pipeline includes a Post-
Solver module of comparison between the GSR and AGIS
sphere reconstructions. The goal of this task is the internal val-
idation of the primary star catalog astrometric parameters and
associated formal uncertainties: this is carried out through a
detailed analysis of the differences between the two solutions,
thereby enlightening possible causes for discrepancies.

While the implementation of the VSH technique in the cur-
rent GSR pipeline can be already used to identify and remove
a residual rotation between the two catalogs, easily identi-
fied by the toroidal harmonics of degree one, the statistical
robustness of the significance level test of other expansion

Table 4. Attitude results (in µas) for test 2.

e1 e2 e3 e2/e1

1st step Average −0.12 −0.91 0.19 –
RSE 307.76 411.52 25.76 1.34

3rd step Average −0.19 −1.80 −0.12 –
RSE 308.55 411.12 24.02 1.33

AGIS Average – – – –
RSE 167 224 ∼ 20 1.34

coefficients, along with their interpretation in terms of plausi-
ble physical/geometrical effects, need a more extensive investi-
gation, which is being addressed in the above cited forthcoming
paper (Bucciarelli et al., in prep.).

Caution must be paid when the non-uniformity of the stellar
distribution brakes the orthogonality of the base functions, with
the consequence of giving rise to correlations among the VSH
coefficients which must be taken into account; also, early trun-
cation of the series expansion can generate spurious coefficients
which result in false signal detection.

Another technique that we plan to adopt for the analysis
of zonal errors is that of Infinitely Overlapping Circles (IOC;
Taff et al. 1992; Bucciarelli et al. 1993): based on a statistical
moving average naturally defined on the sphere; this technique
is particularly easy to implement and can be successfully applied
to extract local signals of scale length comparable or larger than
the typical distance between neighboring sources.

6.4. Full-accuracy relativistic models

As shown in the present paper, GSR would benefit from the
implementation of a relativistic model able to cope with the
accuracy of the Gaia measurement. Work in this sense is in a
very advanced stage, and will be reported in a forthcoming pub-
lication (Vecchaiato et al., in prep.).

6.5. Handling outliers, observations’ weighting and
micro-events

Observations’ errors have to be used to build the weight matrix
of the system. At present, this is done by using the expected
uncertainty of the observed object (see Sect. 3.1) but, as
explained in Lindegren et al. (2012), a more effective weighting
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Fig. 12. Histograms of the attitude solution after the third step of test 2
for the x, y and z axes.

can be obtained by considering both these uncertainties and the
actual observations’ residuals, a procedure that in AGIS is also
used to identify the outliers of the observations of a given source.

In addition to this, attitude undergoes uninterrupted pertur-
bations because of the so-called micro-events, namely “micro-
clanks” (small adjustments of the satellite structure) and “micro-
hits” (due to the impact of micro-meteoroids with the Gaia satel-
lite). These anomalies manifest themselves through non-nominal
temporal variations of the AL and AC field angles, which can
be interpreted as variations in the attitude scan rates. In the
main pipeline they are estimated by a pre-processor running
before the sphere solution, and successively removed from the
observations. Failing to remove such perturbations would cause
mas-level degradation to the accuracy of the sphere solution.

The above mentioned weighting procedure is currently
under testing in GSR whereas, regarding the treatment of the
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Fig. 13. Test 2 BA reconstruction for FoV1. That of FoV2 is not
reported as it is the same with the opposite sign. As for the previous
test, the blue line represents the true modulation signal, while the red
dots, which use the scale on the right side of the plot, are the differences
between such signal and the final reconstruction after the three steps.

Table 5. AL and AC standard deviations of the residuals of the non-
weighted equation system (“System” columns) after step 3 of test 2 per
magnitude class compared with the single-measurement error used to
generate the simulated data (“Est.” columns).

Magnitude range AL σ AC σ

Est. System Est. System

G < 13 76 78 348 400
13 ≤ G < 15 175 180 809 930
15 ≤ G < 16 310 320 1472 1700
16 ≤ G < 17 495 510 2485 2900
17 ≤ G < 18 801 840 4494 5200
18 ≤ G < 19 1133 1400 8969 10000
19 ≤ G 2345 2700 19695 23000

micro-events, our pipeline is already able to remove them using
the attitude corrections provided in the Gaia Main Database,
while work is ongoing to implement GSR’s own procedure for
micro-clanks and micro-hits.

7. Conclusions

The Astrometric Verification Unit is in charge of providing the
DPAC with a pipeline able to realize a reconstruction of the
global astrometric sphere independent from that of AGIS. This
would allow the double-checking of the determination of the
global reference system of Gaia. To this aim it is sufficient to
reproduce the first stage of the process implemented by AGIS,
namely the solution of the global sphere from the so-called pri-
mary sources. The absence of the secondary sources in such a
pipeline, named AVU/GSR, is compensated for by the compar-
ison task, whose goal is to identify and characterize any sys-
tematic discrepancy between the AGIS and GSR solutions larger
than the expected accuracy of the Gaia catalog.

In order to guarantee a sufficient independence between the
two solutions, AVU/GSR uses a different relativistic model for
the astrometric observable, and a different parametrization for the
attitude, based on MRP rather than quaternions. Moreover, the
solution of the system of linearized equations is performed with a
parallelized implementation of the LSQR full-iterative algorithm.

In this paper we showed that GSR managed to success-
fully reproduce the results of the demonstration run of the AGIS
pipeline, as illustrated in Lindegren et al. (2012). This required
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the execution of two tests on simulated data for a 5 year mis-
sion duration, both solved for astrometric, attitude and instru-
ment parameters.

The first one had the goal of assessing the sub-µas numerical
accuracy of the GSR pipeline, which was obtained by using per-
turbed starting values and error-free observational data; the sec-
ond one had to mirror the outputs of the AGIS demonstration run
with perturbed values for source and attitude parameters, plus
random measurement errors compatible with those expected by
Gaia. Moreover, large-scale instrument calibrations were used
to reconstruct a periodic signal injected in the BA value. This
test was designed to produce an astrometric catalog with errors
compatible with those of the final Gaia catalog.

Both tests performed according to expectations, even if the
current implementation of the GSR relativistic model is less accu-
rate than the AGIS one, its accuracy being limited by the influ-
ence of solar system bodies other than the Sun on the computation
of null geodesics. Despite these limitations, the current pipeline
reaches the level needed by the Gaia measurements at appropri-
ate elongation from the perturbing object. Moreover, the model is
improved by finding approximate corrections to the light deflec-
tion effect induced by the planets and the Moon, thereby extend-
ing the required accuracy to larger portions of the sky.

The influence of this issue on the final solution was investi-
gated in this work. Test 1 revealed that GSR is critically sensi-
ble to the catalog errors because of the limited accuracy of the
model; at the same time it allowed to prove that the required
quality of the solution can be reached by performing an exter-
nal iteration. Test 2, instead, showed that, as it was expected,
the manifestation of modelling errors depends on the accuracy
of Gaia measurements, and therefore at the faint end of the
stellar sample the AGIS and the GSR solutions are compatible
already after the first iteration, while this is true for the entire cat-
alog only after the external iteration. This special procedure will
likely be unnecessary when the ongoing work of implementing
an astrometric model at the same intrinsic accuracy of GREM
will be completed.

This work has put to evidence that GSR is sufficiently mature
to start processing real data, and current developments aim at
providing this pipeline with the features needed to meet the accu-
racy requirements of the Gaia solution. Some of them are made
necessary by the actual behavior of the instrument and have
already been tackled by AGIS; others involve a more sophisti-
cated treatment of the comparison task, and are specific to GSR.
Aim of the GSR group is to have all the needed features imple-
mented and tested for by the next Gaia Data Release, in order to
team up with AGIS and thus contribute to the production of the
Gaia catalog, as foreseen in the DPAC plans.
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