1,597 research outputs found

    Precoding in multigateway multibeam satellite systems

    Get PDF
    This paper considers a multigateway multibeam satellite system with multiple feeds per beam. In these systems, each gateway serves a set of beams (cluster) so that the overall data traffic is generated at different geographical areas. Full frequency reuse among beams is considered so that interference mitigation techniques are mandatory. Precisely, this paper aims at designing the precoding scheme which, in contrast to single gateway schemes, entails two main challenges. First, the precoding matrix shall be separated into feed groups assigned to each gateway. Second, complete channel state information (CSI) is required at each gateway, leading to a large communication overhead. In order to solve these problems, a design based on a regularized singular value block decomposition of the channel matrix is presented so that both intercluster (i.e., beams of different clusters) and intracluster (i.e., beams of the same cluster) interference is minimized. In addition, different gateway cooperative schemes are analyzed in order to keep the inter-gateway communication low. Furthermore, the impact of the feeder link interference (i.e., interference between different feeder links) is analyzed and it is shown both numerically and analytically that the system performance is reduced severely whenever this interference occurs even though precoding reverts this additional interference. Finally, multicast transmission is also considered. Numerical simulations are shown considering the latest fixed broadband communication standard DVB-S2X so that the quantized feedback effect is evaluated. The proposed precoding technique results to achieve a performance close to the single gateway operation even when the cooperation among gateways is low.Postprint (author's final draft

    Young and very young stars in NGC 3372, the Carina nebula

    Get PDF
    Results are presented of a large-scale imaging photometric study of the stellar population in the northern part of NGC 3372 with a w avelength co verage from 0.33 to 2.5 µm. All observations were made at Las Campanas Observatory . The sizes of the three stellar clusters, Tr 14, Tr 15 and Tr 16, were determined b y means of star counts. Two-colour and colour-magnitude diagrams are presented and analyzed for eac h individual cluster. The three clusters were found to b e at a similar distance from the Sun, = 2 . 7 kpc, but with very large scatter in both A V and d . suggesting drastic variations in intracluster dust densit y . Dust particle size distribution variations are eviden t resulting in wide variations in extinction law. We determined ages bet ween 3 and 60 million years for Tr 15 and bet ween less than 1 and 6 million years for Tr 14 and Tr 16. The Tr 14 cluster is partially em bedded in a dense molecular cloud that extends to wards the south west reaching its highest densit y some three arcmin from the cluster nucleus. The ric h UV field created b y the Tr14 stars ionizes most of the visible HI I region in its vicinit y and most of the radio HI I region Car I. Deep J H K images of the Car I region reveal the presence of a young, em bedded stellar population that includes several O9–B0 stars and an ultracompact HI I region.Fil: Tapia, M.. Universidad Nacional Autónoma de México; MéxicoFil: Roth, M.. Las Campanas Observatory; ChileFil: Vazquez, Ruben Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaFil: Persi, P.. IASFC, CNR; Itali

    Precoding in multigateway multibeam satellite systems

    Get PDF
    This paper considers a multigateway multibeam satellite system with multiple feeds per beam. In these systems, each gateway serves a set of beams (cluster) so that the overall data traffic is generated at different geographical areas. Full frequency reuse among beams is considered so that interference mitigation techniques are mandatory. Precisely, this paper aims at designing the precoding scheme which, in contrast to single gateway schemes, entails two main challenges. First, the precoding matrix shall be separated into feed groups assigned to each gateway. Second, complete channel state information (CSI) is required at each gateway, leading to a large communication overhead. In order to solve these problems, a design based on a regularized singular value block decomposition of the channel matrix is presented so that both intercluster (i.e., beams of different clusters) and intracluster (i.e., beams of the same cluster) interference is minimized. In addition, different gateway cooperative schemes are analyzed in order to keep the inter-gateway communication low. Furthermore, the impact of the feeder link interference (i.e., interference between different feeder links) is analyzed and it is shown both numerically and analytically that the system performance is reduced severely whenever this interference occurs even though precoding reverts this additional interference. Finally, multicast transmission is also considered. Numerical simulations are shown considering the latest fixed broadband communication standard DVB-S2X so that the quantized feedback effect is evaluated. The proposed precoding technique results to achieve a performance close to the single gateway operation even when the cooperation among gateways is low.Postprint (author's final draft

    Spiral structure in the outer galactic disk, I: the third galactic quadrant

    Get PDF
    We combine optical and radio observations to trace the spiral structure in the third quadrant of the Milky Way. The optical observations consist of a large sample of young open clusters and associations, whereas the radio observations consist of a survey of nearby and distant clouds observed in CO. Both the optical and radio samples are the largest ones thus far presented in the literature. We use this unique material to analyze the behavior of interstellar extinction and to trace the detailed structure of the third Galactic quadrant (TGQ).We find that the outer (Cygnus) grand design spiral arm is traced by stellar and CO components, while the Perseus arm is traced solely by CO and is possibly being disrupted by the crossing of the Local (Orion) arm. The Local arm is traced by CO and young stars toward l ÂĽ 240 and extends for over 8 kpc along the line of sight reaching the outer arm. Finally, we characterize the Galactic warp and compare the geometries implied by the young stellar and CO components.Fil: Vazquez, Ruben Angel. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; ArgentinaFil: May, Jorge. Universidad de Chile; ChileFil: Carraro, Giovanni. European Southern Observatory; ChileFil: Bronfman, Leonardo. Universidad de Chile; ChileFil: Moitinho, Andre. Universidad de Lisboa; PortugalFil: Baume, Gustavo Luis. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; Argentin

    Evaluation of wave loads on a new type of perforated caisson

    Get PDF
    Permission is granted by ICE Publishing to print one copy for personal use. Any other use of these PDF files is subject to reprint fees.A new type of perforated breakwater has been tested combining the advantages of cylindrical geometry with stepped wave energy dissipation. Thus, the new type of caisson implies a significant reduction of maximum wave forces, as well as loads transmitted to the foundation in comparison with conventional vertical breakwater and other types of perforated caissons. Starting from a brief description of the model and test results, this paper describes the development of a methodology for the estimation of maximum wave loads on this type of breakwater, in order to become a generalisable tool for predesign purposes. Construction and installation constraints of this new type of caisson are also assessed. These need to be taken into account in order to keep some advantages from the proposed design, while noting the key factors from a practical point of view.Peer ReviewedPostprint (published version

    Transmit Beamforming Design with Received-Interference Power Constraints: The Zero-Forcing Relaxation

    Get PDF
    The use of multi-antenna transmitters is emerging as an essential technology of the future wireless communication systems. While Zero-Forcing Beamforming (ZFB) has become the most popular low-complexity transmit beamforming design, it has some drawbacks basically related to the effort of "trying" to invert the channel coefficients towards the interfered users. In particular, ZFB performs poorly in the low Signal-to-Noise Ratio (SNR) regime and does not work when the interfered users outnumber the transmit antennas. In this paper, we study in detail an alternative transmit beamforming design framework, where we allow some residual received-interference power instead of trying to null it completely out. Subsequently, we provide a close-form non-iterative optimal solution that avoids the use of sophisticated convex optimization techniques that compromise its applicability onto practical systems. Supporting results based on numerical simulations show that the proposed transmit beamforming is able to perform close to the optimal with much lower computational complexity.Grant numbers : TERESA - Hybrid TERrEstrial/Satellite Air Interface for 5G and Beyond project (code : TEC2017-90093-C3-1-R).@ 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    ASteCA: Automated Stellar Cluster Analysis

    Get PDF
    We present the Automated Stellar Cluster Analysis package (ASteCA), a suit of tools designed to fully automate the standard tests applied on stellar clusters to determine their basic parameters. The set of functions included in the code make use of positional and photometric data to obtain precise and objective values for a given cluster’s center coordinates, radius, luminosity function and integrated color magnitude, as well as characterizing through a statistical estimator its probability of being a true physical cluster rather than a random overdensity of field stars. ASteCA incorporates a Bayesian field star decontamination algorithm capable of assigning membership probabilities using photometric data alone. An isochrone fitting process based on the generation of synthetic clusters from theoretical isochrones and selection of the best fit through a genetic algorithm is also present, which allows ASteCA to provide accurate estimates for a cluster’s metallicity, age, extinction and distance values along with its uncertainties. To validate the code we applied it on a large set of over 400 synthetic MASSCLEAN clusters with varying degrees of field star contamination as well as a smaller set of 20 observed Milky Way open clusters (Berkeley 7, Bochum 11, Czernik 26, Czernik 30, Haffner 11, Haffner 19, NGC 133, NGC 2236, NGC 2264, NGC 2324, NGC 2421, NGC 2627, NGC 6231, NGC 6383, NGC 6705, Ruprecht 1, Tombaugh 1, Trumpler 1, Trumpler 5 and Trumpler 14) studied in the literature. The results show that ASteCA is able to recover cluster parameters with an acceptable precision even for those clusters affected by substantial field star contamination. ASteCA is written in Python and is made available as an open source code which can be downloaded ready to be used from its official site.Fil: Perren, Gabriel Ignacio. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina; ArgentinaFil: Vazquez, Ruben Angel. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Astrofísica de La Plata; Argentina; ArgentinaFil: Piatti, Andres Eduardo. Universidad Nacional de Cordoba. Observatorio Astronomico de Cordoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    • …
    corecore