74 research outputs found

    Quantifying the impact of climate change on drought regimes using the Standardised Precipitation Index

    Get PDF
    The study presents a methodology to characterise short- or long-term drought events, designed to aid understanding of how climate change may affect future risk. An indicator of drought magnitude, combining parameters of duration, spatial extent and intensity, is presented based on the Standardised Precipitation Index (SPI). The SPI is applied to observed (1955–2003) and projected (2003–2050) precipitation data from the Community Integrated Assessment System (CIAS). Potential consequences of climate change on drought regimes in Australia, Brazil, China, Ethiopia, India, Spain, Portugal and the USA are quantified. Uncertainty is assessed by emulating a range of global circulation models to project climate change. Further uncertainty is addressed through the use of a high-emission scenario and a low stabilisation scenario representing a stringent mitigation policy. Climate change was shown to have a larger effect on the duration and magnitude of long-term droughts, and Australia, Brazil, Spain, Portugal and the USA were highlighted as being particularly vulnerable to multi-year drought events, with the potential for drought magnitude to exceed historical experience. The study highlights the characteristics of drought which may be more sensitive under climate change. For example, on average, short-term droughts in the USA do not become more intense but are projected to increase in duration. Importantly, the stringent mitigation scenario had limited effect on drought regimes in the first half of the twenty-first century, showing that adaptation to drought risk will be vital in these regions

    Meeting of the Ecosystem Approach Correspondence Group on on Pollution Monitoring (CorMon Pollution)

    Get PDF
    In accordance with the UNEP/MAP Programme of Work adopted by COP 21 for the biennium 2020-2021, the United Nations Environment Programme/Mediterranean Action Plan-Barcelona Convention Secretariat (UNEP/MAP) and its Programme for the Assessment and Control of Marine Pollution in the Mediterranean (MED POL) organized the Meeting of the Ecosystem Approach Correspondence Group on Pollution Monitoring (CorMon on Pollution Monitoring). The Meeting was held via videoconference on 26-27 April 2021. 2. The main objectives of the Meeting were to: a) Review the Monitoring Guidelines/Protocols for IMAP Common Indicator 18, as well as the Monitoring Guidelines/Protocols for Analytical Quality Assurance and Reporting of Monitoring Data for IMAP Common Indicators 13, 14, 17, 18 and 20; b) Take stock of the state of play of inter-laboratory testing and good laboratory practice related to IMAP Ecological Objectives 5 and 9; c) Analyze the proposal for the integration and aggregation rules for IMAP Ecological Objectives 5, 9 and 10 and assessment criteria for contaminants and nutrients; d) Recommend the ways and means to strengthen implementation of IMAP Pollution Cluster towards preparation of the 2023 MED Quality Status Report

    Hydrological response to meteorological drought using the Palmer drought indices in Thessaly, Greece

    No full text
    This Study evaluates the efficacy of Palmer drought indices to monitor hydrological droughts ill river discharges and soil moisture in selected watersheds with varying geomorphologic characteristics in region of Thessaly, Greece. The Palmer four indices (PDSI, Weighted PDSI, PHDI and the moisture anomaly Z-index) were used as indicators of meteorological drought severity. The hydrological drought severity was evaluated from the outputs of the monthly UTHBAL conceptual water balance model. The UTHBAL model was calibrated with the available observed runoff data to extend, reconstruct and produce runoff and soil moisture timeseries for the hydrologic period 1960-2002 at the study catchments. The produced hydrologic variables were normalized through Box-Cox transformation and standardized to normal distribution. The standardized hydrologic variables were used as all indicator of hydrological drought severity and were compared with the Palmer drought indices timeseries estimated by basin-wide meteorological data. The results showed that, in general, the Weighted PDSI and the Moisture anomaly Z-index were found to better represent river discharges and soil moisture, respectively, for all study watersheds irrespectively to their area, geophysical, and hydroclimatic characteristics. However, the results were quite variable ill the identification of specific historical drought periods. Although, the Palmer indices were Successful in the identification of drought severity of historical events, they failed to identify the drought duration

    Climatic impacts on the runoff generation processes in British Columbia, Canada

    No full text
    The potential impact of future climate change on runoff generation processes in two southern British Columbia catchments was explored using the Canadian Centre for Climate Modelling Analysis General Circulation Model (CGCMa1) to estimate future changes in precipitation, temperature and cloud cover while the U.B.C. Watershed Model was used to simulate discharges and quantify the separate runoff components, i.e. rainfall, snowmelt, glacier melt and groundwater. Changes, not only in precipitation and temperature but also in the spatial distribution of precipitation with elevation, cloud cover, glacier extension, altitude distribution of vegetation, vegetation biomass production and plant physiology were considered. The future climate of the catchments would be wetter and warmer than the present. In the maritime rain-fed catchment of the Upper Campbell, runoff from rainfall is the most significant source of flow for present and future climatic conditions in the autumn and winter whereas runoff from groundwater generates the flow in spring and summer, especially for the future climate scenario. The total runoff, under the future climatic conditions, would increase in the autumn and winter and decrease in spring and summer. In contrast, in the interior snow-covered Illecillewaet catchment, groundwater is the most significant runoff generation mechanism in the autumn and winter although, at present, significant flow is generated from snowmelt in spring and from glacier runoff in summer. In the future scenario, the contribution to flow from snowmelt would increase in winter and diminish in spring while the runoff from the glacier would remain unchanged; groundwater would then become the most significant source of runoff, which would peak earlier in the season.</p> <p style='line-height: 20px;'><b>Keywords: </b>climatic change, hydrological simulation, rainfall, snowmelt, runoff processe

    Streamflow simulation methods for ungauged and poorly gauged watersheds

    Get PDF
    Rainfall-runoff modelling procedures for ungauged and poorly gauged watersheds are developed in this study. A well-established hydrological model, the University of British Columbia (UBC) watershed model, is selected and applied in five different river basins located in Canada, Cyprus, and Pakistan. Catchments from cold, temperate, continental, and semiarid climate zones are included to demonstrate the procedures developed. Two methodologies for streamflow modelling are proposed and analysed. The first method uses the UBC watershed model with a universal set of parameters for water allocation and flow routing, and precipitation gradients estimated from the available annual precipitation data as well as from regional information on the distribution of orographic precipitation. This method is proposed for watersheds without streamflow gauge data and limited meteorological station data. The second hybrid method proposes the coupling of UBC watershed model with artificial neural networks (ANNs) and is intended for use in poorly gauged watersheds which have limited streamflow measurements. The two proposed methods have been applied to five mountainous watersheds with largely varying climatic, physiographic, and hydrological characteristics. The evaluation of the applied methods is based on the combination of graphical results, statistical evaluation metrics, and normalized goodness-of-fit statistics. The results show that the first method satisfactorily simulates the observed hydrograph assuming that the basins are ungauged. When limited streamflow measurements are available, the coupling of ANNs with the regional, non-calibrated UBC flow model components is considered a successful alternative method to the conventional calibration of a hydrological model based on the evaluation criteria employed for streamflow modelling and flood frequency estimation

    Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece

    Get PDF
    The temporal and spatial characteristics of meteorological drought are investigated to provide a framework for sustainable water resources management in the region of Thessaly, Greece. Thessaly is the most intensely cultivated and productive agricultural plain region in Greece. Thessaly's total area is about 13 700 km(2) and it is surrounded by mountains and traversed by Pinios River. Using the Standardized Precipitation Index (SPI) as an indicator of drought severity, the characteristics of droughts are examined. Thessaly was divided into 212 grid-cells of 8 x 8 km and monthly precipitation data for the period 1960-1993 from 50 meteorological stations were used for global interpolation of precipitation using spatial co-ordinates and elevation data. Drought severity was assessed from the estimated gridded SPI values at multiple time scales. Firstly, the temporal and spatial characteristics of droughts were analyzed and then, Drought Severity - Areal extent - Frequency (SAF) annual and monthly curves were developed. The analysis indicated that moderate and severe droughts are common in Thessaly region. Using the SAF curves, the return period of selected severe drought events was assessed
    corecore