290 research outputs found

    Rashba splitting of 100 meV in Au-intercalated graphene on SiC

    Full text link
    Intercalation of Au can produce giant Rashba-type spin-orbit splittings in graphene but this has not yet been achieved on a semiconductor substrate. For graphene/SiC(0001), Au intercalation yields two phases with different doping. Here, we report the preparation of an almost pure p-type graphene phase after Au intercalation. We observe a 100 meV Rashba-type spin-orbit splitting at 0.9 eV binding energy. We show that this giant splitting is due to hybridization and much more limited in energy and momentum space than for Au-intercalated graphene on Ni

    Suppression of electron scattering resonances in graphene by quantum dots

    Full text link
    Transmission of low-energetic electrons through two-dimensional materials leads to unique scattering resonances. These resonances contribute to photoemission from occupied bands where they appear as strongly dispersive features of suppressed photoelectron intensity. Using angle-resolved photoemission we have systematically studied scattering resonances in epitaxial graphene grown on the chemically differing substrates Ir(111), Bi/Ir, Ni(111) as well as in graphene/Ir(111) nanopatterned with a superlattice of uniform Ir quantum dots. While the strength of the chemical interaction with the substrate has almost no effect on the dispersion of the scattering resonances, their energy can be controlled by the magnitude of charge transfer from/to graphene. At the same time, a superlattice of small quantum dots deposited on graphene eliminates the resonances completely. We ascribe this effect to a nanodot-induced buckling of graphene and its local rehybridization from sp2^{2} to sp3^{3} towards a three-dimensional structure. Our results suggest nanopatterning as a prospective tool for tuning optoelectronic properties of two-dimensional materials with graphene-like structure.Comment: The following article has been submitted to Applied Physics Letters. If it is published, it will be found online at http://apl.aip.or

    Laser-induced persistent photovoltage on the surface of a ternary topological insulator at room temperature

    Full text link
    Using time- and angle-resolved photoemission, we investigate the ultrafast response of excited electrons in the ternary topological insulator (Bi1x_{1 x}Sbx_{x})2_2Te3_3 to fs-infrared pulses. We demonstrate that at the critical concentration xx=0.55, where the system becomes bulk insulating, a surface voltage can be driven at room temperature through the topological surface state solely by optical means. We further show that such a photovoltage persists over a time scale that exceeds \sim6 μ\mus, i.e, much longer than the characteristic relaxation times of bulk states. We attribute the origin of the photovoltage to a laser-induced band-bending effect which emerges near the surface region on ultrafast time scales. The photovoltage is also accompanied by a remarkable increase in the relaxation times of excited states as compared to undoped topological insulators. Our findings are relevant in the context of applications of topological surface states in future optical devices.Comment: 5 pages, 4 figure

    Graphene for spintronics: giant Rashba splitting due to hybridization with Au

    Full text link
    Graphene in spintronics has so far primarily meant spin current leads of high performance because the intrinsic spin-orbit coupling of its pi-electrons is very weak. If a large spin-orbit coupling could be created by a proximity effect, the material could also form active elements of a spintronic device such as the Das-Datta spin field-effect transistor, however, metal interfaces often compromise the band dispersion of massless Dirac fermions. Our measurements show that Au intercalation at the graphene-Ni interface creates a giant spin-orbit splitting (~100 meV) in the graphene Dirac cone up to the Fermi energy. Photoelectron spectroscopy reveals hybridization with Au-5d states as the source for the giant spin-orbit splitting. An ab initio model of the system shows a Rashba-split dispersion with the analytically predicted gapless band topology around the Dirac point of graphene and indicates that a sharp graphene-Au interface at equilibrium distance will account for only ~10 meV spin-orbit splitting. The ab initio calculations suggest an enhancement due to Au atoms that get closer to the graphene and do not violate the sublattice symmetry.Comment: 16 pages (3 figures) + supplementary information 16 pages (14 figures

    Non-monotonic pseudo-gap in high-Tc cuprates

    Full text link
    The mechanism of high temperature superconductivity is not resolved for so long because the normal state of cuprates is not yet understood. Here we show that the normal state pseudo-gap exhibits an unexpected non-monotonic temperature dependence, which rules out the possibility to describe it by a single mechanism such as superconducting phase fluctuations. Moreover, this behaviour, being remarkably similar to the behaviour of the charge ordering gap in the transition-metal dichalcogenides, completes the correspondence between these two classes of compounds: the cuprates in the PG state and the dichalcogenides in the incommensurate charge ordering state reveal virtually identical spectra of one-particle excitations as function of energy, momentum and temperature. These results suggest that the normal state pseudo-gap, which was considered to be very peculiar to cuprates, seems to be a general complex phenomenon for 2D metals. This may not only help to clarify the normal state electronic structure of 2D metals but also provide new insight into electronic properties of 2D solids where the metal-insulator and metal-superconductor transitions are considered on similar basis as instabilities of particle-hole and particle-particle interaction, respectively

    Ultrafast spin polarization control of Dirac fermions in topological insulators

    Full text link
    Three-dimensional topological insulators (TIs) are characterized by spin-polarized Dirac-cone surface states that are protected from backscattering by time-reversal symmetry. Control of the spin polarization of topological surface states (TSSs) using femtosecond light pulses opens novel perspectives for the generation and manipulation of dissipationless surface spin currents on ultrafast timescales. Using time-, spin-, and angle-resolved spectroscopy, we directly monitor for the first time the ultrafast response of the spin polarization of photoexcited TSSs to circularly-polarized femtosecond pulses of infrared light. We achieve all-optical switching of the transient out-of-plane spin polarization, which relaxes in about 1.2 ps. Our observations establish the feasibility of ultrafast optical control of spin-polarized Dirac fermions in TIs and pave the way for novel optospintronic applications at ultimate speeds.Comment: 9 pages, 4 figure

    Band Renormalization of Blue Phosphorus on Au 111

    Get PDF
    Most recently, theoretical calculations predicted the stability of a novel two dimensional phosphorus honeycomb lattice named blue phosphorus. Here, we report on the growth of blue phosphorus on Au 111 and unravel its structural details using diffraction, microscopy and theoretical calculations. Most importantly, by utilizing angle resolved photoemission spectroscopy we identify its momentum resolved electronic structure. We find that Au 111 breaks the sublattice symmetry of blue phosphorus leading to an orbital dependent band renormalization upon the formation of a 4 4 superstructure. Notably, the semiconducting two dimensional phosphorus realizes its valence band maximum at 0.9 eV binding energy, however, shifted in momentum space due to the substrate induced band renormalizatio

    Probing two topological surface bands of Sb2Te3 by spin-polarized photoemission spectroscopy

    Get PDF
    Using high resolution spin- and angle-resolved photoemission spectroscopy, we map the electronic structure and spin texture of the surface states of the topological insulator Sb2Te3. In combination with density functional calculations (DFT), we directly show that Sb2Te3 exhibits a partially occupied, single spin-Dirac cone around the Fermi energy, which is topologically protected. DFT obtains a spin polarization of the occupied Dirac cone states of 80-90%, which is in reasonable agreement with the experimental data after careful background subtraction. Furthermore, we observe a strongly spin-orbit split surface band at lower energy. This state is found at 0.8eV below the Fermi level at the gamma-point, disperses upwards, and disappears at about 0.4eV below the Fermi level into two different bulk bands. Along the gamma-K direction, the band is located within a spin-orbit gap. According to an argument given by Pendry and Gurman in 1975, such a gap must contain a surface state, if it is located away from the high symmetry points of the Brillouin zone. Thus, the novel spin-split state is protected by symmetry, too.Comment: 8 pages, 10 figure

    Angle-resolved and core-level photoemission study of interfacing the topological insulator Bi1.5Sb0.5Te1.7Se1.3 with Ag, Nb and Fe

    Get PDF
    Interfaces between a bulk-insulating topological insulator (TI) and metallic adatoms have been studied using high-resolution, angle-resolved and core-level photoemission. Fe, Nb and Ag were evaporated onto Bi1.5Sb0.5Te1.7Se1.3 (BSTS) surfaces both at room temperature and 38K. The coverage- and temperature-dependence of the adsorption and interfacial formation process have been investigated, highlighting the effects of the overlayer growth on the occupied electronic structure of the TI. For all coverages at room temperature and for those equivalent to less than 0.1 monolayer at low temperature all three metals lead to a downward shift of the TI's bands with respect to the Fermi level. At room temperature Ag appears to intercalate efficiently into the van der Waals gap of BSTS, accompanied by low-level substitution of the Te/Se atoms of the termination layer of the crystal. This Te/Se substitution with silver increases significantly for low temperature adsorption, and can even dominate the electrostatic environment of the Bi/Sb atoms in the BSTS near-surface region. On the other hand, Fe and Nb evaporants remain close to the termination layer of the crystal. On room temperature deposition, they initially substitute isoelectronically for Bi as a function of coverage, before substituting for Te/Se atoms. For low temperature deposition, Fe and Nb are too immobile for substitution processes and show a behaviour consistent with clustering on the surface. For both Ag and Fe/Nb, these differing adsorption pathways leads to the qualitatively similar and remarkable behavior for low temperature deposition that the chemical potential first moves upward (n-type dopant behavior) and then downward (p-type behavior) on increasing coverage.Comment: 10 pages, 4 figures. In our Phys. Rev. B manuscript an error was made in formulating the last sentence of the abstract that, unfortunately, was missed in the page proofs. Version 2 on arxiv has the correct formulation of this sentenc
    corecore