43 research outputs found

    Genotype-phenotype relationships of truncating mutations, p.E297G and p.D482G in bile salt export pump deficiency

    Get PDF
    Background &amp; Aims: Bile salt export pump (BSEP) deficiency frequently necessitates liver transplantation in childhood. In contrast to two predicted protein truncating mutations (PPTMs), homozygous p.D482G or p.E297G mutations are associated with relatively mild phenotypes, responsive to surgical interruption of the enterohepatic circulation (siEHC). The phenotype of patients with a compound heterozygous genotype of one p.D482G or p.E297G mutation and one PPTM has remained unclear. We aimed to assess their genotype-phenotype relationship. Methods: From the NAPPED database, we selected patients with homozygous p.D482G or p.E297G mutations (BSEP1/1; n = 31), with one p.D482G or p.E297G, and one PPTM (BSEP1/3; n = 30), and with two PPTMs (BSEP3/3; n = 77). We compared clinical presentation, native liver survival (NLS), and the effect of siEHC on NLS. Results: The groups had a similar median age at presentation (0.7-1.3 years). Overall NLS at age 10 years was 21% in BSEP1/3 vs. 75% in BSEP1/1 and 23% in BSEP3/3 (p &lt;0.001). Without siEHC, NLS in the BSEP1/3 group was similar to that in BSEP3/3, but considerably lower than in BSEP1/1 (at age 10 years: 38%, 30%, and 71%, respectively; p = 0.003). After siEHC, BSEP1/3 and BSEP3/3 were associated with similarly low NLS, while NLS was much higher in BSEP1/1 (10 years after siEHC, 27%, 14%, and 92%, respectively; p &lt;0.001). Conclusions: Individuals with BSEP deficiency with one p.E297G or p.D482G mutation and one PPTM have a similarly severe disease course and low responsiveness to siEHC as those with two PPTMs. This identifies a considerable subgroup of patients who are unlikely to benefit from interruption of the enterohepatic circulation by either surgical or ileal bile acid transporter inhibitor treatment. Impact and implications: This manuscript defines the clinical features and prognosis of individuals with BSEP deficiency involving the combination of one relatively mild and one very severe BSEP deficiency mutation. Until now, it had always been assumed that the mild mutation would be enough to ensure a relatively good prognosis. However, our manuscript shows that the prognosis of these patients is just as poor as that of patients with two severe mutations. They do not respond to biliary diversion surgery and will likely not respond to the new IBAT (ileal bile acid transporter) inhibitors, which have recently been approved for use in BSEP deficiency.</p

    Genotype-phenotype relationships of truncating mutations, p.E297G and p.D482G in bile salt export pump deficiency

    Get PDF
    Background & Aims: Bile salt export pump (BSEP) deficiency frequently necessitates liver transplantation in childhood. Homozygous p.D482G or p.E297G mutations are associated with relatively mild phenotypes, responsive to surgical interruption of the enterohepatic circulation (siEHC), in contrast to patients with two predicted protein truncating mutations (PPTM). The phenotype of patients with a compound heterozygous genotype of one p.D482G or p.E297G mutation and one PPTM has remained unclear. We aimed to assess their genotype-phenotype relationship. Methods: From the NAPPED database, we selected patients with homozygous p.D482G or p.E297G mutations (BSEP1/1; n=31), with one p.D482G or p.E297G, and one PPTM (BSEP1/3; n=30), and with two PPTMs (BSEP3/3; n=77). We compared presentation, native liver survival (NLS), and effect of siEHC on NLS. Results: The groups had a similar median age at presentation (0.7-1.3 years). Overall NLS at age 10 years was 21% in BSEP1/3 vs. 75% in BSEP1/1 and 23% in BSEP3/3 (P<0.001). Without siEHC in their follow-up, NLS of BSEP1/3 was similar to BSEP3/3 patients, but considerably lower than BSEP1/1 patients (at age 10 years: 38%, 30%, and 71%, resp; P=0.003). After siEHC, BSEP1/3 and BSEP3/3 patients had similarly low NLS, while this was much higher in BSEP1/1 patients (10 years after siEHC, 27%, 14%, and 92%, resp.; P<0.001). Conclusions: BSEP deficiency patients with one p.E297G or p.D482G mutation and one PPTM have a similarly severe disease course and low responsiveness to siEHC as patients with two PPTMs. This identifies a considerable subgroup of patients who are unlikely to benefit from interruption of the enterohepatic circulation by either surgical or ileal bile acid transporter inhibitor treatment

    Genetic landscape of pediatric acute liver failure of indeterminate origin.

    Get PDF
    BACKGROUND AIMS Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, main causes are viral infections (12-16%) and inherited metabolic diseases (14-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition. METHODS With this international, multicenter observational study, patients (0-18 y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed. RESULTS In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF (RALF). WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (46%), and in children with RALF (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8) and DGUOK (n=7) were the most frequent findings. When categorizing, most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%) and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplants. CONCLUSION This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics

    Total biliary diversion as a treatment option for patients with progressive familial intrahepatic cholestasis and Alagille syndrome

    No full text
    BACKGROUND: Progressive familial intrahepatic cholestasis (PFIC) with low gamma-glutamyl transpeptidase (GGT) and Alagille syndrome are associated with persistent cholestasis and severe pruritus. Various types of biliary diversion have been used to reduce this pruritus and prevent liver dysfunction. We report our experience concerning the efficacy and safety of total biliary diversion (TBD) as an additional treatment option. METHODS: TBD was performed in four PFIC patients and one patient with Alagille syndrome, and was accomplished by anastomosing a jejunal segment to the choledochal duct terminating as an end stoma, or by disconnecting the choledochal duct after previous cholecystojejunocutaneostomy. RESULTS: TBD resulted in a marked improvement of symptoms and biochemical parameters in all PFIC patients. Despite relief of pruritus, cholestasis persisted in the Alagille patient. During 5-15years of follow-up, no clinical signs of fat malabsorption such as diarrhea or weight loss were encountered. However, to maintain adequate levels of fat-soluble vitamins, especially of vitamin K, substantial supplementation was necessary. CONCLUSIONS: Total biliary diversion can be a useful surgical treatment option for patients with low-GGT PFIC and possibly also Alagille syndrome, when partial biliary diversion is insufficient. It can be performed without inducing clinical signs of fat malabsorption although individualized supplementation of fat-soluble vitamins with careful monitoring is warranted

    Current and future therapies for inherited cholestatic liver diseases

    No full text
    Familial intrahepatic cholestasis (FIC) comprises a group of rare cholestatic liver diseases associated with canalicular transport defects resulting predominantly from mutations in ATP8B1, ABCB11 and ABCB4. Phenotypes range from benign recurrent intrahepatic cholestasis (BRIC), associated with recurrent cholestatic attacks, to progressive FIC (PFIC). Patients often suffer from severe pruritus and eventually progressive cholestasis results in liver failure. Currently, first-line treatment includes ursodeoxycholic acid in patients with ABCB4 deficiency (PFIC3) and partial biliary diversion in patients with ATP8B1 or ABCB11 deficiency (PFIC1 and PFIC2). When treatment fails, liver transplantation is needed which is associated with complications like rejection, post-transplant hepatic steatosis and recurrence of disease. Therefore, the need for more and better therapies for this group of chronic diseases remains. Here, we discuss new symptomatic treatment options like total biliary diversion, pharmacological diversion of bile acids and hepatocyte transplantation. Furthermore, we focus on emerging mutation-targeted therapeutic strategies, providing an outlook for future personalized treatment for inherited cholestatic liver disease

    Total biliary diversion as a treatment option for patients with progressive familial intrahepatic cholestasis and Alagille syndrome

    No full text
    BACKGROUND: Progressive familial intrahepatic cholestasis (PFIC) with low gamma-glutamyl transpeptidase (GGT) and Alagille syndrome are associated with persistent cholestasis and severe pruritus. Various types of biliary diversion have been used to reduce this pruritus and prevent liver dysfunction. We report our experience concerning the efficacy and safety of total biliary diversion (TBD) as an additional treatment option. METHODS: TBD was performed in four PFIC patients and one patient with Alagille syndrome, and was accomplished by anastomosing a jejunal segment to the choledochal duct terminating as an end stoma, or by disconnecting the choledochal duct after previous cholecystojejunocutaneostomy. RESULTS: TBD resulted in a marked improvement of symptoms and biochemical parameters in all PFIC patients. Despite relief of pruritus, cholestasis persisted in the Alagille patient. During 5-15years of follow-up, no clinical signs of fat malabsorption such as diarrhea or weight loss were encountered. However, to maintain adequate levels of fat-soluble vitamins, especially of vitamin K, substantial supplementation was necessary. CONCLUSIONS: Total biliary diversion can be a useful surgical treatment option for patients with low-GGT PFIC and possibly also Alagille syndrome, when partial biliary diversion is insufficient. It can be performed without inducing clinical signs of fat malabsorption although individualized supplementation of fat-soluble vitamins with careful monitoring is warranted

    Effects of new and emerging therapies on gastrointestinal outcomes in cystic fibrosis

    No full text
    Purpose of review Several new therapeutic modalities have recently become available to be used in patients with cystic fibrosis such as potentiators, modulators, and probiotics. Although the effects on pulmonary function have been well documented, gastrointestinal outcomes have been addressed only rarely. Recent findings Both the potentiator (ivacaftor) and the potentiator/modulator combination (ivacaftor/lumacaftor) that are currently on the market have a positive effect on BMI. Young patients (2-5 years of age) with a gating mutation may show improvement of exocrine pancreatic function on ivacaftor. In this specific patient population this agent also seems to improve intestinal pH and reflux. The effect of these medications on other gastrointestinal outcomes, such as intestinal inflammation and cystic fibrosis liver disease, has not been described so far. Furthermore, the results of several trials suggest that probiotics might reduce intestinal inflammation. Finally, organoids might be used to predict in vitro the clinical effect of potentiators and modulators. Summary The effect of new interventions on the gastrointestinal outcomes studied so far is favourable. Future studies should address the effect on other gastrointestinal parameters

    Analysis of Aberrant Pre-messenger RNA Splicing Resulting From Mutations in ATP8B1 and Efficient In Vitro Rescue by Adapted U1 Small Nuclear RNA

    No full text
    ATP8B1 deficiency is a severe autosomal recessive liver disease resulting from mutations in the ATP8B1 gene characterized by a continuous phenotypical spectrum from intermittent (benign recurrent intrahepatic cholestasis; BRIC) to progressive familial intrahepatic cholestasis (PFIC). Current therapeutic options are insufficient, and elucidating the molecular consequences of mutations could lead to personalized mutation-specific therapies. We investigated the effect on pre-messenger RNA splicing of 14 ATP8B1 mutations at exon-intron boundaries using an in vitro minigene system. Eleven mutations, mostly associated with a PFIC phenotype, resulted in aberrant splicing and a complete absence of correctly spliced product. In contrast, three mutations led to partially correct splicing and were associated with a BRIC phenotype. These findings indicate an inverse correlation between the level of correctly spliced product and disease severity. Expression of modified U1 small nuclear RNAs (snRNA) complementary to the splice donor sites strongly improved or completely rescued splicing for several ATP8B1 mutations located at donor, as well as acceptor, splice sites. In one case, we also evaluated exon-specific U1 snRNAs that, by targeting nonconserved intronic sequences, might reduce possible off-target events. Although very effective in correcting exon skipping, they also induced retention of the short downstream intron. Conclusion: We systematically characterized the molecular consequences of 14 ATP8B1 mutations at exon-intron boundaries associated with ATP8B1 deficiency and found that the majority resulted in total exon skipping. The amount of correctly spliced product inversely correlated with disease severity. Compensatory modified U1 snRNAs, complementary to mutated donor splice sites, were able to improve exon definition very efficiently and could be a novel therapeutic strategy in ATP8B1 deficiency as well as other genetic diseases. (Hepatology 2015;61:1382-1391

    Rescue of defective ATP8B1 trafficking by CFTR correctors as a therapeutic strategy for familial intrahepatic cholestasis

    No full text
    Background & Aims ATP8B1 deficiency is an autosomal recessive liver disease characterized by intrahepatic cholestasis. ATP8B1 mutation p.I661T, the most frequent mutation in European patients, results in protein misfolding and impaired targeting to the plasma membrane. Similarly, mutations in cystic fibrosis transmembrane conductance regulator (CFTR), associated with cystic fibrosis, impair protein folding and trafficking. The aim of this study was to investigate whether compounds that rescue CFTR F508del trafficking are capable of improving p.I661T-ATP8B1 plasma membrane expression. Methods The effect of CFTR corrector compounds on plasma membrane expression of p.I661T-ATP8B1 was evaluated by cell surface biotinylation and immunofluorescence. ATPase activity was evaluated of a purified analogue protein carrying a mutation at the matching position (p.L622T-ATP8A2). Results The clinically used compounds, 4-phenylbutyric acid (4-PBA), suberoylanilide hydroxamic acid (SAHA) and N-butyldeoxynojirimycin (NB-DNJ) improved p.I661T-ATP8B1 plasma membrane targeting. Compounds C4, C5, C13 and C17 also significantly increased plasma membrane expression of p.I661T-ATP8B1. SAHA and compound C17 upregulated ATP8B1 transcription. p.I661T-ATP8B1 was partly targeted to the canalicular membrane in polarized cells, which became more evident upon treatment with SAHA and/or C4. p.L622T-ATP8A2 showed phospholipid-induced ATPase activity, suggesting that mutations at a matching position in ATP8B1 do not block functionality. Combination therapy of SAHA and compound C4 resulted in an additional improvement of ATP8B1 cell surface abundance. Conclusions This study shows that several CFTR correctors can improve trafficking of p.I661T-ATP8B1 to the plasma membrane in vitro. Hence, these compounds may be suitable to be part of a future therapy for ATP8B1 deficiency and other genetic disorders associated with protein misfolding. Lay Summary Compounds that improve the cellular machinery dealing with protein homeostasis (proteostasis) and allow for proper folding of proteins with (mild) missense mutations are called proteostasis regulators (Balch, Science 2008). Such compounds are potentially of high therapeutic value for many (liver) diseases. In this manuscript, we investigated whether compounds identified in screens as CFTR folding correctors are actually proteostasis regulators and thus have a broader application in other protein folding diseases. Using these compounds, we could indeed show improved trafficking to the (apical) plasma membrane of a mutated ATP8B1 protein, carrying the p.I661T missense mutation. This is the most frequently identified mutation in this rare cholestatic disorder. Importantly, ATP8B1 shows no similarity to CFTR. These data are important in providing support for the concept that rare, genetic liver diseases can potentially be treated using a generalized strategy
    corecore