621 research outputs found

    Quantum Critical Dynamics of A Qubit Coupled to An Isotropic Lipkin-Meshkov-Glick Bath

    Get PDF
    We explore a dynamic signature of quantum phase transition (QPT) in an isotropic Lipkin-Meshkov-Glick (LMG) model by studying the time evolution of a central qubit coupled to it. We evaluate exactly the time-dependent purity, which can be used to measure quantum coherence, of the central qubit. It is found that distinctly different behaviors of the purity as a function of the parameter reveal clearly the QPT point in the system. It is also clarified that the present model is equivalent to an anti Jaynes-Cummings model under certain conditions.Comment: 8 pages, 4 figure

    An Alternative Interpretation of Recent ARPES Measurements on TiSe2

    Full text link
    Recently there has been a renewed interest in the charge density wave transition of TiSe2, fuelled by the possibility that this transition may be driven by the formation of an excitonic insulator or even an excitonic condensate. We show here that the recent ARPES measurements on TiSe2 can also be interpreted in terms of an alternative scenario, in which the transition is due to a combination of Jahn-Teller effects and exciton formation. The hybrid exciton-phonons which cause the CDW formation interpolate between a purely structural and a purely electronic type of transition. Above the transition temperature, the electron-phonon coupling becomes ineffective but a finite mean-field density of excitons remains and gives rise to the observed diffuse ARPES signals.Comment: 4 pages, 2 figure

    Viral load dynamics in intubated patients with COVID-19 admitted to the intensive care unit

    Get PDF
    Background: Prolonged viral RNA detection in respiratory samples from patients with COVID-19 has been described, but the clinical relevance remains unclear. We studied the dynamics of SARS-CoV-2 on a group and individual level in intubated ICU patients. Methods: In a cohort of 86 patients, we analysed SARS-CoV-2 RT-PCR results on nasopharyngeal and sputum samples (obtained as part of clinical care twice a week) according to time after intubation. Subsequently, we performed survival analyses. Results: 870 samples were tested by RT-PCR. Overall viral load was highest in the first week (median nasopharynx 3.5. IQR 1.5-4.3; median sputum 4.3. IQR 3.3-5.6) and decreased over time. In 20% of patients a relapsing pattern was observed. Nasopharyngeal and sputum PCR status on day 14 was not significantly associated with survival up to day 60 in this small cohort. Conclusion: In general SARS-CoV-2 RNA levels in respiratory samples in patients with severe COVID-19 decease alter the first week after intubation, but individual SARS-CoV-2 RNA levels can show a relapsing pattern. Larger studies are needed to address the association of clearance of SARS-CoV-2 RNA from respiratory samples with survival, because we observed a trend towards better survival in patients with early clearance from sputum. (C) 2021 The Authors. Published by Elsevier Inc

    Constitutive expression of ftsZ overrides the whi developmental genes to initiate sporulation of Streptomyces coelicolor

    Get PDF
    The filamentous soil bacteria Streptomyces undergo a highly complex developmental programme. Before streptomycetes commit themselves to sporulation, distinct morphological checkpoints are passed in the aerial hyphae that are subject to multi-level control by the whi sporulation genes. Here we show that whi-independent expression of FtsZ restores sporulation to the early sporulation mutants whiA, whiB, whiG, whiH, whiI and whiJ. Viability, stress resistance and high-resolution electron microscopy underlined that viable spores were formed. However, spores from sporulation-restored whiA and whiG mutants showed defects in DNA segregation/condensation, while spores from the complemented whiB mutant had increased stress sensitivity, perhaps as a result of changes in the spore sheath. In contrast to the whi mutants, normal sporulation of ssgB null mutants—which fail to properly localise FtsZ—could not be restored by enhancing FtsZ protein levels, forming spore-like bodies that lack spore walls. Our data strongly suggest that the whi genes control a decisive event towards sporulation of streptomycetes, namely the correct timing of developmental ftsZ transcription. The biological significance may be to ensure that sporulation-specific cell division will only start once sufficient aerial mycelium biomass has been generated. Our data shed new light on the longstanding question as to how whi genes control sporulation, which has intrigued scientists for four decades

    Use of sanger and next-generation sequencing to screen for mosaic and intronic APC variants in unexplained colorectal polyposis patients

    Get PDF
    In addition to classic germline APC gene variants, APC mosaicism and deep intronic germline APC variants have also been reported to be causes of adenomatous polyposis. In this study, we investigated 80 unexplained colorectal polyposis patients without germline pathogenic variants in known polyposis predisposing genes to detect mosaic and deep intronic APC variants. All patients developed more than 50 colorectal polyps, with adenomas being predominantly observed. To detect APC mosaicism, we performed next-generation sequencing (NGS) in leukocyte DNA. Furthermore, using Sanger sequencing, the cohort was screened for the following previously reported deep intronic pathogenic germline APC variants: c.1408 + 731C > T, p.(Gly471Serfs*55), c.1408 + 735A > T, p.(Gly471Serfs*55), c.1408 + 729A > G, p.(Gly471Serfs*55) and c.532-941G > A, p.(Phe178Argfs*22). We did not detect mosaic or intronic APC variants in the screened unexplained colorectal polyposis patients. The results of this study indicate that the deep intronic APC variants investigated in this study are not a cause of colorectal polyposis in this Dutch population. In addition, NGS did not detect any further mosaic variants in our cohort.Molecular tumour pathology - and tumour geneticsMTG2 - Moleculaire genetica van gastrointestinale tumore

    The Chitobiose-Binding Protein, DasA, Acts as a Link between Chitin Utilization and Morphogenesis in Streptomyces Coelicolor

    Full text link
    Streptomycetes are mycelial soil bacteria that undergo a developmental programme that leads to sporulating aerial hyphae. As soil-dwelling bacteria, streptomycetes rely primarily on natural polymers such as cellulose, xylan and chitin for the colonization of their environmental niche and therefore these polysaccharides may play a critical role in monitoring the global nutritional status of the environment. In this work we analysed the role of DasA, the sugar-binding component of the chitobiose ATP-binding cassette transport system, in informing the cell of environmental conditions, and its role in the onset of development and in ensuring correct sporulation. The chromosomal interruption of dasA resulted in a carbon-source-dependent vegetative arrest phenotype, and we identified a second DasR-dependent sugar transporter, in addition to the N-acetylglucosamine phosphotransferase system (PTS(GlcNAc)), that relates primary metabolism to development. Under conditions that allowed sporulation, highly aberrant spores with many prematurely produced germ tubes were observed. While GlcNAc locks streptomycetes in the vegetative state, a high extracellular concentration of the GlcNAc polymer chitin has no effect on development. The striking distinction is due to a difference in the transporters responsible for the import of GlcNAc, which enters via the PTS, and of chitin, which enters as the hydrolytic product chitobiose (GlcNAc(2)) through the DasABC transporter. A model explaining the role of these two essentially different transport systems in the control of development is provided
    • …
    corecore