
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Chemical and bioassay assessment of waters related to hydraulic fracturing at a
tight gas production site

Faber, A.-H.; Annevelink, M.P.J.A.; Schot, P.P.; Baken, K.A.; Schriks, M.; Emke, E.; de
Voogt, P.; van Wezel, A.P.
DOI
10.1016/j.scitotenv.2019.06.354
Publication date
2019
Document Version
Final published version
Published in
Science of the Total Environment
License
CC BY-NC-ND

Link to publication

Citation for published version (APA):
Faber, A-H., Annevelink, M. P. J. A., Schot, P. P., Baken, K. A., Schriks, M., Emke, E., de
Voogt, P., & van Wezel, A. P. (2019). Chemical and bioassay assessment of waters related to
hydraulic fracturing at a tight gas production site. Science of the Total Environment, 690, 636-
646. https://doi.org/10.1016/j.scitotenv.2019.06.354

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1016/j.scitotenv.2019.06.354
https://dare.uva.nl/personal/pure/en/publications/chemical-and-bioassay-assessment-of-waters-related-to-hydraulic-fracturing-at-a-tight-gas-production-site(c0027437-aa8c-4f01-a4d1-ed2bb9cfc670).html
https://doi.org/10.1016/j.scitotenv.2019.06.354


Science of the Total Environment 690 (2019) 636–646

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Chemical and bioassay assessment of waters related to hydraulic
fracturing at a tight gas production site
Ann-Hélène Faber a,b,d,⁎,1, Mark P.J.A. Annevelink b,c,1, Paul P. Schot a, Kirsten A. Baken b,2, Merijn Schriks b,3,
Erik Emke b, Pim de Voogt b,d, Annemarie P. van Wezel a,b,4

a Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
b KWR Watercycle Research Institute, Nieuwegein, the Netherlands
c Department of Environmental Science, Radboud University Nijmegen, the Netherlands
d Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
H I G H L I G H T S G R A P H I C A L A B S T R A C T
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• Fracturing/flowback fluids potentially
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• Clear genotoxic and oxidative stress re-
sponses found for fracturing/flowback
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• Measures justified to handle, transport
and treat fracturing/flowback fluids.
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Publicly available chemical assessments of hydraulic fracturing related waters are generally based on shale gas
practices in the U.S. There is a lack of information on hydraulic fracturing related gas development from EU coun-
tries andmore generally on other types of extractions. This research fills this knowledge gap by presenting chem-
ical and bioassay assessments of hydraulic fracturing related waters from a tight gas development in the
Netherlands. Fracturing fluid, flowback water and groundwater from surrounding aquifers before and after the
actual fracturing were analysed bymeans of high resolution liquid chromatography tandemmass spectrometry,
the Ames test and three chemical activated luciferase gene expression bioassays aimed at determining
genotoxicity, oxidative stress response and polyaromatic hydrocarbon contamination.
After sample enrichment a higher number of peaks can be found in both fracturing fluid and flowback samples.
No clear differences in chemical compositionwere shown in the groundwater samples before and after hydraulic
fracturing. Preliminary environmental fate data of the tentatively identified chemicals points towards persistence
inwater. Clear genotoxic and oxidative stress responseswere found in the fracturingfluid and flowback samples.
A preliminary suspect screening resulted in 25 and 36 matches in positive and negative ionisation respectively
with the 338 possible suspect candidates on the list.
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Extensive measures relating to the handling, transport and treatment of hydraulic fracturing related waters are
currently in place within the Dutch context. The results of the present study provide a scientific justification
for such measures taken to avoid adverse environmental and human health impacts.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The possible use of hydraulic fracturing to retrieve oil and gas from
deep underground shale formations, is heavily debated by European
governments and in the scientific literature (Hays et al., 2015;
Vandecasteele et al., 2015; Thomas et al., 2016;). Different EU member
states do however consider shale gas exploration for its competing eco-
nomic value with other fossil fuels. In Poland and England future explo-
rations and production of shale gas have been planned (Stamford and
Azapagic, 2014; Vandecasteele et al., 2015). Other member states post-
pone developments, in anticipation of in-depth human and environ-
mental health related risk assessments and cost/benefit analyses.
Other sources of gas are also being extracted using hydraulic fracturing,
such as tight gas (from sandstone or limestone formations) or coal bed
methane. Pressures, volumes and characteristics of the fracturing fluids
and wastewaters (flowback and produced waters) differ with the geol-
ogy and the type of gas extracted (King, 2012; Annevelink et al., 2016),
nonetheless procedures and activities are comparable (Orem et al.,
2014; Tang et al., 2014; Caineng et al., 2015).

Fracturing fluids are roughly made up of 90% water, 9% proppants
and 1% chemical additives (Vidic et al., 2013). The additives used in-
clude biocides, surfactants, gelling agents and friction reducers among
others and are described in greater detail by Vidic et al. (2013) and
Faber et al. (2018). Fracturing fluids and wastewaters, including
flowback and produced waters, can be highly contaminated by organic
and inorganic compounds, salts, acids and possible radioactive material
(Stringfellow et al., 2014; Ferrer and Thurman, 2015; Reagan et al.,
2015; Butkovskyi et al., 2017). The wastewaters can be stored in large
reservoirs, re-used for a new fracturing, injected into the subsoil for dis-
posal, and/or treated by water treatment plants before re-entering the
environment (Lutz et al., 2013; Warner et al., 2013; Hladik et al.,
2014; Vengosh et al., 2014; Liden et al., 2018). Possible spills or leaks
during the different process steps may cause environmental pollution
(Gross et al., 2013; Swarthout et al., 2015; Maloney et al., 2017;
Patterson et al., 2017), so potential adverse effects of the chemicals in-
volved are relevant (Rahm and Riha, 2012). Most current research on
hydraulic fracturing related waters focuses on shale gas in the U.S., but
seldomon other types of hydraulic fracturing and are rarely undertaken
in European countries (Faber et al., 2018; Santos et al., 2018). However,
for hydraulic fracturing related to tight gas or coal bedmethane, compa-
rable environmental risksmay be at stake as for shale gas. Furthermore,
the entire hydraulic fracturing related water cycle including fracturing
fluid, flowback and produced waters and surrounding waters is gener-
ally not taken into account in the currently available studies, as most
studies consider one or two matrices, i.e. surface water and/or ground-
water, flowbackwater or fracturing fluid (Faber et al., 2018).Most stud-
ies also focus on target analysis which does not necessarily account for
transformation or breakdown products. In addition a lot of the
chemicals used in fracturing fluids are proprietary, which would not
be detectedwith target analysis. Reviews of analytical approaches to hy-
draulic fracturing fluid and flowback samples have been published after
this study was undertaken (Oetjen et al., 2017; Santos et al., 2018) and
highlight the need for non-targeted approaches to analyse the organic
component but do not mention the use of bioassays.

Here, an analysis of fracturing fluids, flowbackwater and groundwa-
ter samples related to tight gas hydraulic fracturing is presented, to yield
information on possible chemical exposures within the Dutch context.
Due to the large number of compounds involved, we present an
in vitro bioassay approach providing insight into possible
environmental and human health effects combined with a non-target
high resolution mass spectrometry analysis and suspect screening
(Brack et al., 2016; Sjerps et al., 2016; Hollender et al., 2017). We
focus on polar organic compounds due to their low removal efficiencies
during wastewater treatment (Westerhoff et al., 2005; Reemtsma et al.,
2016).

Similar approaches have been undertaken by Tang et al. (2014), He
et al. (2017), Crosby et al. (2018) and Kassotis et al. (2018)where either
groundwater or fracturing fluid and flowback waters related to uncon-
ventional oil and gas activities have been assessed chemically and
bioanalytically. Tang et al. (2014) and Crosby et al. (2018) assessed tox-
icological end-points that are comparable to this study and He et al.
(2017) undertook a non-targeted HRMS approach similar to the one
performed in this study. Oetjen et al. (2018) and Piotrowski et al.
(2018) also applied a non-target approach to organically characterize
fracturing fluid and/or flowback samples. However the latter focuses
on volatile organic compounds, which is not themain focus in the pres-
ent study.

2. Materials and methods

Fracturing fluids, produced waters and groundwaters, obtained in
January 2016 from a Dutch tight gas hydraulic fracturing location,
were analysed for their chemical composition and toxicological effects.
Using both direct injection and concentrated extracted samples, the
chemical composition was analysed using liquid chromatography-high
resolutionmass spectrometry (LC-HRMS) and suspect screening. Differ-
ent in vitro bioassays were performed to detect possible adverse health
effects of the chemical mixture present in the water samples. First, the
Ames fluctuation test was carried out, which uses bacteria to determine
mutagenic effects,with andwithout the addition of liver enzymes to de-
tect substances which need metabolic activation before they become
mutagenic as well (Mortelmans and Zeiger, 2000; Reifferscheid et al.,
2012). Second, the chemical-activated luciferase gene expression
(CALUX) assay was performed to determine three endpoints:
genotoxicity response (p53-dependent pathway activation), oxidative
stress response (activation of theNrf2 pathway) and dioxin receptor ac-
tivation,which is an indicator of polycyclic aromatic hydrocarbon (PAH)
contamination (Murk et al., 1996).

2.1. Site, sample collection and sample preparation

The Dutch tight gas producing site from which water samples were
taken has been producing gas since 1995 and the well has been frac-
tured twice recently. The samples were taken before, during and after
the second fracture. The previous fracture may have influenced the re-
sults of the flowback water samples. Chemicals from the first fracturing
event might have remained in the formation andmay be present in the
flowback samples. This could affect the number of peaks and response
intensities for the chemical analyses and the responses for the bioassay
assessments. The well was drilled in an S-shape: starting off vertically
followed by an increasing deviation up to roughly 50 degrees then
back to vertical to a depth of approximately 3.7 km. The fracturing
was applied to a sandstone formation belonging to the carboniferous
formation that is roughly located between 3000 and 4500m below sur-
face. The topmost formation extending to roughly 120m below the sur-
face corresponds to the Upper North Sea Group of the Neogene and
Quaternary systems (DGM diep v4.0; Dinoloket, n.d.), which is made
up of a succession of sandy layers and two clay layers that are located

http://creativecommons.org/licenses/by-nc-nd/4.0/
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at roughly −15 and − 100 m below the surface (DGM v.2.2, REGIS II
v.2.2; Dinoloket, 2019). The soil type at the extraction site is sandy.
Here we studied in-depth the fracturing fluids, flowback waters and
groundwater related to a fracturing event at a single location.

Samples and controls (1.5 L) were taken in clean plastic bottles, fro-
zen and transported to the laboratory. The samples consisted of the two
different fracturing fluids which were injected separately at the start of
the hydraulic fracturing process, seven flowback water samples, taken
at day 1 to 8 (excluding day 4) after the hydraulic fracturing started,
and 8 groundwater samples taken at a depth of 10m, at 2 and 20m dis-
tance from the borehole, on two separate dates before and after the hy-
draulic fracturing process (Fig. 1).The sampleswere immediately frozen
after sampling and were defrosted shortly before analysis. Each sample
type (fracturing fluid, flowback water and groundwater samples) was
delivered in different types of plastic bottles. A control was prepared
for each sample type by adding Evian water to the same type of plastic
bottles and storing them in the same manner than the samples. The
aqueous phase of every sample was analysed. The fracturing fluids
and flowback samples were all analysed by direct injection (without
concentration or dilution). The groundwater samples, the first fractur-
ing fluid phase (FF1), and three flowback samples (FWD1, FWD6 and
FWD7) were concentrated using solid phase extraction. The rest of the
fracturing and flowback samples could not be concentrated due to the
limited volume of the aqueous phase that could be extracted from
these highly viscous samples.

For sample preparation of fracturing fluid and flowback samples, the
top oil and gel layer was removed using a 20 mL plastic disposable sy-
ringe. The remaining sample was centrifuged in 250 mL polypropylene
centrifuge tubes for 10 min under 3000 g, subsequently the remaining
top oil and formed pellet were removed. The remaining aqueous
phase was filtered using low vacuum and a 500 mL rapid flow filter
unit over a 0.2 μm aPES membrane with a 90 mm diameter
(ThermoScientific –Nalgene) covered by a 1 μmcellulosefilter. Ground-
water samples were filtered using ignited sea sand. The sea sand was
conditioned twice with 20% (v/v) methanol (99.9%) in acetonitrile
(99.9%), and then three times with Evian water at pH 2.3. Flowback
samples and fracturing fluids were concentrated up to a factor of
5000, groundwater samples were concentrated up to a factor of 7500.
200 mg OASIS® HLB 5 cc LP glass cartridges were used, conditioned
twice with 20% (v/v) methanol (99.9%) in acetonitrile (99.9%), subse-
quently conditioned once with methanol (99.9%), and finally condi-
tioned three times with Evian water pH 2.3. Samples were acidified to
pH 2.3 with 15% ultrapure HCL. The acidified samples of 1.5 L each
were connected to the inlet of the SPE cartridge and run over the SPE
column at 10mL/min under low vacuum. Then the sampleswere eluted
three times with 2.5 mL 20% (v/v) methanol (99.9%) in acetonitrile
(99.9%). The 7.5 mL eluate was collected in test tubes with screw cap
and Teflon inlay and stored at −18 °C. Before analysis the samples
Fig. 1.Overviewof analysed samples: two separate fracturing fluid (FF) phases FF1 and FF2, sev
(excluding day 4), and eight groundwater (GR) samples before (B) and after (A) hydraulic frac
were allowed to evaporate at a temperature of 60 °C to 0.5 mL, after
which 0.5 mL methanol (99.9%) was added and the samples were fur-
ther evaporated to 100 μL under 60 °C. Then 100 μL DMSO was added
and the sample was evaporated for 10 min. DMSO was added to reach
a final volume of 200 μL. Procedure blanks, prepared using Evian, were
subjected to all of the previously mentioned processes relevant for
their samples, except for the centrifugation. They were also stored in
the freezer in the same bottles that the samples were taken. For both
the chemical analysis and the bioassays, the samples were put in trans-
parent glass vials of 1.5 mL. These vials were cleaned with a solution of
10% (v/v) of a 40% (m/m) sodium hydroxide (97%) solution in ultrapure
water diluted in absolute ethanol (99.9%). The vials were then rinsed
with hot water and a solution of 1% (v/v) hydrochloric acid (37–38%)
in ultrapure water before being rinsed again with ultrapure water, ace-
tone (99.7%) and petroleum ether (ultrapure grade), and left to dry at
room temperature.

2.2. Chemical analysis using LC-HRMS

The resulting sample extracts were analysed using Liquid Chroma-
tography coupled to a linear ion trap (LTQ) Orbitrap high resolution
mass spectrometer (Thermo Fisher Scientific, Bremen, Germany), in
positive and negative ionisation mode (Sjerps et al., 2016). The liquid
chromatography setup includes an Accela UHPLC system and
autosampler, a 150 mm × 2.1 mm i.d. Xbridge C18-column with 3.5
μm particles and a 4.0 mm × 2.0 mm i.d C18 Guard column
(Phenomenex). The columns were kept at a temperature of 21 °C and
the injection volumewas 20 μL. The analyteswere separated using a lin-
ear gradient at a flow rate of 0.3 mL/min: starting at 95% water, 5% ace-
tonitrile, 0.05% formic acid (v/v/v), increased to 100% acetonitrile with
0.05% formic acid at 40 min. Between consecutive runs, the analytical
column was re-equilibrated for 5 min. Detection limits for compounds
were set between 115 and 1300 g/mol in order to avoid as much back-
ground noise as possible whilst still covering a large mass range. Prod-
uct ions measured by the Orbitrap were generated in the LTQ trap at a
normalized collision energy setting of 35%, using an isolation width of
2 Da. Electrospray ionisation (ESI) source conditions were; capillary
voltage 3.0 kV, heated capillary temperature 350 °C, capillary voltage
24 V, tube lens 70 V. In order to estimate the semi-quantitative concen-
trations of the detected masses, an internal standard (IS) containing
atrazine-d5 (99.8%; J.H. Ritmeester B.V., Nieuwegein, The Netherlands)
for positive ionisation mode and bentazon-d6 (98.5%; Dr. Ehrenstorfer
GmbH, Augsburg, Germany) for negative ionisation mode was used.
These internal standards were selected due to the stable ionisation re-
sponse in various sample matrices. An IS equivalent (IS eq) concentra-
tion does not represent the actual concentration of a given compound
andmay vary between2 and 4 orders ofmagnitude from the actual con-
centration depending on the specific compound (Sjerps et al., 2016).
en flowback (FW) samples from day 1 to day 8 after hydraulic fracturing occurred FWD1–8
turing took place, 2 and 20 m from the well. SPE = Solid Phase Extraction.



639A.-H. Faber et al. / Science of the Total Environment 690 (2019) 636–646
Interpretation of the raw data was performed using Sieve 2.2 for
peak integration in combination with Xcalibur Software version 2.1
(Thermo Fisher Scientific, Breda, The Netherlands) for molecular for-
mula identification. For peak integration the following parameters
were used: a threshold peak of 250,000 and an MZ tolerance of
5 ppm. Peaks with an absolute threshold of at least 100,000 counts
andwith at least a factor 5 differencewith the blank responsewere con-
sidered. In addition, the detectedmasseswere compared to the accurate
masses of chemicals on the suspect list relevant for UO&G related wa-
ters (Faber et al., 2018) using the Compound Discoverer 2.0 software
(Thermo Fischer Scientific, San Jose, CA) with a mass range of +/−
5 ppm. Confidence levels () regarding the identification of compounds
was reported according to Schymanski et al. (2014). Level 5 is of low
confidence and level 1 is of high confidence. The identification to higher
levels of confidence was performed on suspects and peaks with the
highest concentration sums over all the samples. Identification to confi-
dence levels 3 or 2were only possible ifMS2 datawas available. Metfrag
(Ruttkies et al., 2016; Metfrag, n.d.) and CSI fingerID (Dührkop et al.,
2015; CSI FIngerID, n.d.) was used forMS2 in silico fragmentation to fur-
ther identify the peaks. The following parameters were used for
Metfrag: Chemspider database, 5 ppmmz deviation, molecular formula
(if possible), Mzppm of 5, Mzabs of 0.001 and a tree depth of 2, MONA
spectral similarity (50%), MONA exact spectral similarity (100%) and
Chemspider reference count (50%). If available, experimentalMS2 spec-
trums were compared to theoretical MS2 spectrums from mzCloud
(mzCloud, n.d.) and massbank (Horai et al., 2008; Massbank, n.d.) li-
braries. The retention time of the identified peaks were compared to
logP or logKow values of the candidates in order to further validate
the identifications. A high logP or logKow is indicative of a longer reten-
tion time and vice versa (Bade et al., 2015). This was only used as an ad-
ditional verification step for identification andwas only applied to non-
ionisable candidates. n-octanol water partition coefficients
(KOWWIN™ v.168; US EPA a, 2019), volatilisation half-lives
(WVOLWIN™; US EPA a, 2019), wastewater treatment removal
(STPWIN™; US EPA a, 2019), reference doses and weight of evidence
for cancer (EPA-IRIS; US EPA b, 2019) data was gathered for all of the
peaks that were successfully identified to a level 3 or 2 confidence.

The used suspect list consists of fracturing fluid additives from the
US fracfocus database (US Fracfocus, n.d.), the Polish and Dutch regis-
tries, and additional chemical compounds based on reviewed literature
mobilised from the subsurface. The list and background of it can be
found in Faber et al. (2018). Mixtures, inorganic chemicals, metalloids
and non-ionisable chemicals were excluded. Only compounds with at
least one heteroatom were considered ionisable with ESI (e.g. N, S, O,
and P) and only compounds with a molecular weight between 115
and 1300 g/mol are targeted. The suspect list consists of 1386 chemicals
that might be expected in oil and gas related water samples, of which
338 suspects are expected to be detected with our analytical LC-HRMS
method. The analysable suspect list is made up of 64% fracturing fluid
additives and 36% subsurface contaminants.

In order to relate the results of the chemical analyses to possible risks
for drinking water, the internal standard equivalent concentrations in
groundwater destined for the use of drinking water were compared to
the generic threshold of toxicological concern (TTC) of 0.1 μg/L for
chemicals that are not genotoxic in drinking water (Schriks et al.,
2010; Mons et al., 2013). This concentration is also used as a signalling
value for anthropogenic substances in drinking water in the
Netherlands (Dutch Ministry of Infrastructure and Water, 2009) and
as a target value in surface water according to the Memorandum re-
garding the protection of European rivers andwatercourses for the pro-
tection of drinking water (RIWA, n.d.). Drinking water concentrations
below the TTC values are considered to be of negligible human health
risk. The screening-level TTC values have been introduced due to the
lack of relevant toxicological data for many organic compounds and is
based on toxicological data from a representative number of organic
compounds (Baken et al., 2018).
2.3. Bioassay testing

The sample extracts were tested in a selection of in vitro bioassays.
The Ames-fluctuation test, which uses genetically modified Salomnella
typhimurium bacteria to investigate whether a given sample can cause
DNA mutations, was used to determine potential genotoxic effects
(Heringa et al., 2011; Reifferscheid et al., 2012). The Ames fluctuation
test was performed as reported previously (Heringa et al., 2011) with
minor modifications, using strain TA98 for the detection of frame-shift
mutations and TA100, which is sensitive to base-pair substitution, in-
stead of TAmix. All samples and procedure controls were tested in trip-
licate with and without S9 enzyme mix, as well as a solvent control
(DMSO) and the following positive controls: 20 μg/mL of 4-
nitroquinoline N-oxide (4-NQO) in DMSO and 500 μg/mL of 4-nitro-o-
phenylenediamine (4-NOPD) in DMSO for TA98-S9, 5 μg/L of 2-
aminoanthracene (2-AA) in DMSO for TA98 + S9, 12.5 μg/mL of
nitrofurantoin (NF) in DMSO for TA100-S9, and 20 μg/mL of 2-AA in
DMSO for TA100 + S9. Ames fluctuation test bacterial strains, culture
media, and S9 liver enzymes from phenobarbital/β-naphtoflavone-
exposed rats were purchased from Xenometrix GmbH (Allschwil,
Switzerland). Histidine, nutrient broth no. 2 oxoid, 2-AA, MgCl2·6H2O,
NaH2PO4·H2O, and Na2HPO4·2H2O were obtained in analytical grade
from Boom (Meppel, the Netherlands). NaCl and KCl were purchased
from Avantor Performance Materials B.V. (Deventer, the Netherlands).
4-NOPD, 4-NQO, NF, D-glucose-6-phosphate, nicotinamide adenine di-
nucleotide phosphate, and ampicillin were purchased from Sigma-
Aldrich (Zwijndrecht, the Netherlands). The 24- and 96-well plates
were obtained from Greiner Bio-one (Alphen a/d/Rijn, the
Netherlands) and the Corning 384-well plates from Sigma-Aldrich. Re-
sults are expressed as the number of cell culture wells in which the
pH indicator in the culture medium has turned yellow. The average of
the triplicate solvent control should show ≤10 yellow wells and for
the positive controls ≥25 yellow wells need to be counted for the test
to be valid. The Ames fluctuation test gives a binomial response, there-
fore a χ2-test with p b 0.05 was performed to determine if the response
significantly differs from the solvent control. When mutagenicity is de-
tected in the procedure control, statistical significance can also be calcu-
lated compared to the procedure control in order to prevent false
positive results caused by contamination introduced during sample
preparation. When a sample shows a statistically significant response
in at least one of the test conditions (TA 98 or TA100+/− S9), the sam-
ple is considered to be mutagenic. Samples that test negative for
genotoxicity but show cytotoxicity may be false negatives.

The CALUX test makes use of modified mammalian cell lines to in-
vestigate different toxicological end points. In this study the P53
CALUX® (with and without metabolic activation), Nrf2 CALUX® and
PAH CALUX® were performed by Biodetection Systems in Amsterdam,
the Netherlands (Pieterse et al., 2013; van der Linden et al., 2014; BDS,
n.d.). A first selection of five CALUX assayswas performed on one repre-
sentative sample of each water matrix and their procedure blank in
order to determine themost suitable end-points for these types of sam-
ples. An end-pointwas considered suitablewhen a positive response for
one or more of the test samples was obtained. Anti-androgenic activity
and estrogenic response were not considered as end-points for further
testing. DMSOwas used as a solvent control for all of the selected assays.
For the positive controls actinomycin D, cyclophosphamide, curcumin
and benzo[a]pyrene were used for the P53 + S9, the P53-S9, the Nrf2
and the PAH assays respectively. The results from the CALUX assays
can either be positive or below the limit of quantification (LOQ) and
were corrected for the different concentration factors. It can be assumed
that for the samples where the response falls below the LOQ value, no
activation on the specific pathway has occurred and the response can
be interpreted as negative. The LOQ is based on the induction ratio rel-
ative to the reference chemical used for each assay, the volume ofmate-
rial processed and the percentage of DMSO used in each CALUX assay.
The differences in LOQ values are due to the differences in volumes
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and concentration factors used for the samples. Samples that test posi-
tive but for which the corresponding procedure blanks showed a posi-
tive response may be false positives. Furthermore, PAHs cannot be
detected with the chemical analytical method used in this study. There-
fore PAH CALUX® was included in order to account for these
compounds.

3. Results and discussion

3.1. Chemical analysis using LC-HRMS

An overview of the total IS-eq concentrations and the number of de-
tected peaks in fracturing fluid, flowback and surrounding groundwater
is given in Fig. 2. A detailed overview of the non-target results including
detected peaks, retention time and corresponding concentrations for all
the samples in positive and negative ionisation can be found in tables A1
and A2. Table A3 provides an overview of the loss and gain of detected
peaks after sample concentration. Fig. 3 provides a fingerprint of the de-
tected peaks measured at concentrations below and above the TTC
value of 0.1 μg/L IS-eq. The corresponding numerical results for the frac-
turing fluid and flowback samples can be found in Table 2.

The number of detected peaks does not necessarily represent the
number of compounds present in these samples, but may include frag-
ments or adducts other than hydrogen, for example sodium or ammo-
nium adducts. Unstable chemicals may be prone to in-source
fragmentation, which generally does not affect the chemical response
since the fragmentation pattern for a specific compound remains the
same throughout the analysis. More peaks have been detected in posi-
tive ionisation than in negative ionisation mode (Figs. 2, 3 and
Table 2). Roughly 75% and 25% of the detected peaks in positive
ionisation mode relate to fracturing additive and subsurface contami-
nant peaks respectively, whereas in positive ionisation mode only
slightly more fracturing additive peaks are detected than subsurface
contaminant peaks (Fig. 3 and Table 2). A significant decline in additive
Fig. 2. ; (top): Total IS equivalent concentrations in positive ionisation mode (left) and negativ
(negative) equivalent concentrations (μg/L) for the fracturing fluid, flowback and groundwa
negative ionisation mode (right) for the fracturing fluid, flowback and groundwater samples.
(excluding 4). GW = Groundwater (medium grey), taken 2 m (2) and 20 m (20) from the we
peaks is observed in the fracturing fluid samples after day 1 in positive
ionisation (Table 2). After concentration a much higher number of
peaks can be found for both fracturing fluid and flowback samples, eg.
for the concentrated fracturing fluid compared to the directly injected
sample 2322 vs. 88 (positive ionisation mode) or 1468 vs. 39 (negative
ionisation mode). This could also be due to the matrix effect and the
high salt content of the flowback samples. Very few peaks are lost dur-
ing the concentration procedure (8-23) while a high number of peaks is
gained (1269–2251) (table A3). Both the loss and the gain primarily in-
volve compounds with a low molecular weight (MW 100–400), which
include the more polar and mobile chemicals that are relevant in the
context of drinking water production (Reemtsma et al., 2016). The di-
rect fracturing fluid and flowback samples and groundwater samples
have similar number of detected peaks.

Most of the peaks found in the fracturing fluid and the flowback
water samples are detected at concentrations higher than the TTC
value of 0.1 μg/L IS-eq (Fig. 3 and Table 2). The highest total IS-eq con-
centrations are found for the fracturing fluid and flowback samples. In
the first 8 days after the hydraulic fracture occurred, no significant de-
cline in concentrations or detected peaks is observed in the flowback
samples. For the directly injected fracturing fluids, total concentrations
of 6.1 to 217 or 2.8 to 46 mg/L IS-eq are found for positive or negative
ionisation modes respectively. For the direct flowback samples, total
concentrations are in the same range as the fracturing fluids with 1.6
to 372 and 0.23 to 29mg/L IS-eq for positive and negative ionisation re-
spectively. The directly injected flowback sample of day 1 has the
highest total IS-eq concentration. The corresponding concentrated sam-
ple has a lower total concentration but a higher number of detected
peaks compared to the directly injected sample; the same observation
is made for flowback samples taken later. In the concentrated ground-
water samples, total concentration ranges aremultiple orders ofmagni-
tude lower with 9 to 159 and 15 to 63 μg/L IS-eq for positive and
negative ionisation respectively. No clear differences are found between
groundwater samples before and after the current hydraulic fracturing
e ionisation mode (right) given in atrazine-d5 (positive) equivalent and in bentazone-d6
ter samples. (bottom): Number of peaks detected in positive ionisation mode (left) and
FF=Fracturing Fluid (dark grey), 2 phases; FW=Flowback Water (light grey), days D1–8
ll, before (B) and after (A) hydraulic fracturing took place on 2 separate dates (1, 2).



Fig. 3. Fingerprint of detected peaks for all fracturing fluid,flowback and groundwater samples in positive (left) and negative (right) ionisationmode. FF=Fracturing Fluid, 2 phases; FW=
FlowbackWater, daysD1–8 (excluding 4); GW=Groundwater, 2 and 20m from thewell taken before (B) and after (A) the hydraulic fracture, on 2 separate dates (1, 2); c=concentrated
sample; d = direct injected sample. Concentration ranges: grey b0.1 μg/L IS-eq, black ≥0.1 μg/L IS-eq.
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at this site. It was noted that hydraulic fracturing also took place before
the currently studied event, so it cannot be ruled out that this may have
influenced the current study.

The analyses of the directly injected and the concentrated samples in
both positive and negative ionisation are necessary in providing a com-
plete overview of polar organic compounds in hydraulic fracturing re-
lated waters. However, the fracturing fluid and flowback samples have
a high matrix load, hampering identification of peaks and limiting
their confidence levels. Analyzing diluted samples would minimize
the number of detected peaks but would also reduce the observed ma-
trix effects.

The 20 peaks with the highest concentration sums over all the sam-
ples were tentatively identified. These are relevant because they are ei-
ther present in very high concentrations and/or are present in many of
the samples. However, most of these peaks could only be identified to
level 5 confidence level (Schymanski et al., 2014) due to inconclusive
MS1 data or level 4 confidence due to a lack or inconclusive MS2 data.
A total of 5 peaks could be identified to a level 3 or 2 confidence in pos-
itive ionisation (Table 1). Several chemicals can be candidates for an
identified peak. Five out of the sixteen candidates are polyethylene gly-
cols, ofwhich four are present in high amounts. High responses for poly-
ethylene glycols have also been found by He et al. (2017) and by Oetjen
et al. (2018) in flowback and producedwater samples from Canada and
the US, respectively. Diethylene glycol n-butyl ether (112‐34-5) was
found in the fracturing fluid and flowback samples and is used as a sur-
factant. It is also included in the used suspect list and is therefore rele-
vant to the hydraulic fracturing process. Bis(2-ethylhexyl) adipate
(103‐23‐1), dioctyl adipate (123‐79-5), pentaethylene glycol (4792-
15-8), hexaethylene glycol (2615-15-8) and heptaethylene glycol
(5617-32-3) were all found in the fracturing fluid, flowback and
groundwater samples. These candidates may therefore have been
used as additives in the fracturing fluids. Both bis(2-ethylhexyl) adipate
and dioctyl adipate are two possible candidates for one peak which is
present in the order of 1 IS eq μg/L in the groundwater samples. These
candidates are both used as plasticizers (Musser 2005). Pentaethylene
glycol, hexaethylene glycol and heptaethylene glycol were present in
low amounts in the order of 0.01–0.1 IS eq μg/L in the groundwater sam-
ples. Pentaethylene glycol is used in brake fluids and as an aid in cement



Table 1
Identified peaks with 3 or 2 confidence level in positive and negative ionisation mode and their logKow, volatilisation half-life, wastewater treatment removal percentage, reference dose and weight of evidence for cancer. Ref# refers to the number
given to this peak in appendix B. The presence in fracturing fluid (FF), flowback water (FW) and groundwater (GW) samples provides the number of samples in which the peak has been detected. Top 20ƩC refers to the peaks that are among the 20
highest concentration sums.

Ionisation
mode

Ref# Compound (CAS#) Molecular
formula

Confidence
level

Measured
MZ
neutral
(g/mol)

Corrected
MZ
neutral
(g/mol)

Reason
for
correction

Retention
time
(min)

Suspect Presence in
samples

Top
20
ƩC

LogKow
(KOWWIN™
v.168)

Volatilisation half-lives
(WVOLWIN™)

Removal
WWTP %
(STPWIN™)

Reference
Dose
(IRIS)
mg/kg
bw/day

Weight
of
Evidence
for
Cancer
(IRIS)

FF FW GW River (hrs) Lake (hrs)

Positive 1 Bis(2-ethylhexyl) adipate
(103‐23-1)

C22H42O4 3 392.29014 370.30849 [M + Na]
+

42.96444 No 3 7 4 Yes 8.12 2.60E+03 2.85E+04 94.02 6.00E-01 C

Dioctyl adipate (123‐79-5) 8.26 2.60E+03 2.85E+04 94.02
2 Diethylene glycol n-butyl

ether (112‐34-5)
C8H18O3 3 184.10724 162.12569 [M + Na]

+
10.14951 Yes 2 7 0 Yes 0.29 1.04E+05 1.13E+06 1.86

3 Pentaehtylene glycol
monodecyl ether
(3055-95-6)

C20H42O6 3 378.29838 25.55277 No 2 3 0 No 3.40 1.71E+04 1.87E+15 10.95

4 Pentaethylene glycol
(4792-15-8)

C10H22O6 2 260.12327 238.14162 [M + Na]
+

4.88227 No 2 7 7 Yes −2.30 1.19E+11 1.29E+12 1.85

5 Hexaethylene glycol
(2615-15-8)

C12H26O7 2 304.14955 282.16789 [M + Na]
+

5.69744 No 2 7 8 Yes −2.57 8.34E+12 9.10E+13 1.85

6 Heptaethylene glycol
(5617-32-3)

C14H30O8 2 348.17561 326.19428 [M + Na]
+

6.33562 No 2 5 8 Yes −2.85 5.75E+14 6.27E+15 1.85

7 Oleic acid (112‐80-1) C18H34O2 2 282.25572 30.65627 Yes 1 2 0 No 7.73 5.24E+01 7.13E+02 93.99
Negative 8 Monoisobutyl phthalic

acid (30833‐53-5)
C12H14O4 3 222.08902 8.84134 No 0 2 1 No 2.77 1.75E+06 1.91E+07 4.15

Diethyl phthalate (84‐
66-2)

Yes 2.65 1.43E+03 1.58E+04 2.92 8.00E-01 D

9 2-Dodecylbenzenesulfonic
acid (27176‐87-0)

C18H30O3S 3 326.19084 32.59177 Yes 0 3 4 No 4.78 1.69E+04 1.84E+05 69.53

4-Dodecylbenzenesulfonic
acid (121‐65-3)

No 4.78 1.69E+04 1.84E+05 69.53

10 Adipic acid (124‐04-9) C6H10O4 3 146.05788 6.21017 Yes 0 3 0 No 0.23 1.50E+08 1.64E+09 1.85
2- and 3-Methylglutaric
acid (617‐62-9/626‐51-7)

No 0.15/0.15 5.66E
+08/7.27E
+08

6.18E
+09/7.93E
+09

1.85/1.85

2,2-Dimethylsuccinic acid
(597‐43-3)

No 0.08 3.65E+08 3.98E+09 1.85

11 Dibutyl phthalate (84‐
74-2)

C16H22O4 2 278.15138 27.04687 Yes 0 3 0 No 4.61 5.41E+02 6.05E+03 56.06 1.00E-01 D
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grinding (DOW 2009). Hexaethylene glycol is used as an antioxidant
and antimicrobial agent (Chemical Book 2019). No uses could be
found for heptaethylene glycol.

A comparison of the peaks found with a suspect list, made specifi-
cally for oil and gas related hydraulic fracturing activities (Faber et al.,
2018), resulted in 25 out of a total of 2814 detected peaks and 36 out
of a total of 2803 detected peaks matches in positive and negative
ionisation respectively with one of the 338 possible suspect candidates
on the list. The total number of detected peaks relates to the fracturing
fluid, flowback and groundwater samples. Two suspects could be iden-
tified in positive ionisation and four suspects in negative ionisationwith
a confidence level of 3 or 2 (Table 1). The evidence of the identification
including experimental and theoreticalmass spectra can be found in ap-
pendix Appendix B. Diethylene glycol n-butyl ether has been previously
discussed. Oleic acid (112‐80-1), 2-dodecyl benzene sulfonic acid
(27176‐87-0) and adipic acid (124‐04-9) are all used as corrosion inhib-
itors. Oleic acid was found in the fracturing fluid and flowback samples,
as expected. However, the other two corrosion inhibitors were only
found in the flowback samples and 2-dodecyl benzene sulfonic acid
was also found in low amounts in the groundwater samples (order of
0.1 IS eq μg/L). These chemicals may have been used as fracturing
fluid additives during the first hydraulic fracture and remained in the
subsurface formation during well production until the second fracture
took place. Diethyl phthalate (84‐66-2) and dibutyl phthalate (84‐74-
2) are subsurface contaminants and both were found in the flowback
samples and diethyl phyhalatewas also found in one groundwater sam-
ple taken after the hydraulic fracture in very low concentrations (4.02E-
2 IS eq μg/L). Some of the tentatively identified chemicals are present in
the groundwater samples but generally in low amounts. The related
groundwater contaminations cannot be directly linked the hydraulic
fracture and may be due to surrounding activities from agriculture
and/or industry.

Except for diethylene glycol n-butyl ether, the tentatively identified
top 20 summed concentration candidates are not on the hydraulic frac-
turing related suspect list. The suspect list is mainly based on chemical
additives used for extraction of shale gas and chemicals originating
from shale gas formations within the U.S. The samples in the current
study are from Dutch tight sand gas formation sites. Considering the
general uses of the candidates, theymay be used for hydraulic fracturing
purposes in the European context. Very few databases for the European
situation are currently available (Faber et al., 2018). Both variations in
geological conditions and in chemical legislation may however result
in differences in chemical use within the European context compared
to the U.S., possibly explaining the relatively low number of matches
with the suspect list. Another reason could be that many chemicals
are transformed during the hydraulic fracturing process and possible
transformation products are currently not included in the suspect list.
Analysing and identifying European hydraulic fracturing related sam-
ples and including all known transformation productsmay provide bet-
ter insight into the chemicals usedwithin the European framework. This
would also render the suspect list more relevant for European samples
andwould facilitate identification of compounds during analysis. Eleven
of the seventeen candidates have n-octanol water partition coefficients
below 4.50 with relatively lowmolecular weights. These candidates are
relevant for the water sector due to their relatively high solubility and
mobility in water (Westerhoff et al., 2005). Volatilisation half-lives
range from roughly 2 days to N7 billion years. Many of the compounds
have relatively high persistence in water (i.e longer than 10 years).
Moreover, removal percentages during wastewater treatment are gen-
erally low (i.e. 1–10%), with only four candidates with a removal effi-
ciency of N90% and three candidates with a medium removal capacity
(50–70%). The persistence in water may be problematic to human and
environmental health depending on the toxicity. However, due to the
limited number of peaks identified to level 2 or 3 confidence, this pre-
liminary environmental fate data is not representative of the samples
in their entirety. Reference doses and weight of evidence for cancer
was only available for three of the candidates. The gathered reference
doses are relatively low (0.1–0.8 mg/kw bw/day), and there is no evi-
dence of carcinogenicity in humans. Due to the limited toxicity data, it
is difficult to conclude on the toxicity of the tentatively identified peaks.

3.2. Ames fluctuation test and CALUX assay

Table 2 provides an overview of the chemical analyses and the bioas-
say testing results. The results of the chemical analyses focus on the frac-
turing additive and the subsurface contaminant peaks in the fracturing
fluid and the flowback water samples. The peaks that were found in
the groundwater samples cannot be directly related to the fracturing
additives and subsurface contaminants related to the hydraulic fractur-
ing activity and are therefore not shown in this overview. The graphs
corresponding to the Ames fluctuation test and the CALUX test results
for all samples can be found in appendix C. Results that were deemed
untrustworthy due to cytotoxicity, which indicates a possible false neg-
ative or due to a positive response in the control sample, which indi-
cates a possible false positive are shown in grey. Looking at the AMES
test results for TA98–S9, small responses are obtained for fracturing
fluid 1 and the flowback sample from day 2 compared to their respec-
tive procedure blanks. None of the samples showed a positive response
for TA98 + S9. The groundwater samples 2A-2 and 20A-2 show clear
genotoxic responses for TA100-S9 and TA100 + S9 respectively. These
samples were taken at 2 and 20m distance from thewell after the (sec-
ond) hydraulic fracturing event had taken place. However, it is not pos-
sible to designate the hydraulic fracture as a cause of the groundwater
contamination. Surrounding activities, such as agriculture, may have
contributed to these results. All concentrated fracturing fluid and
flowback samples (FF1c, FWD1c, FWD6c and FWD7c) tested positive
for cytotoxicity.This indicates that the concentrated samples hampered
cell growth and test results for these four samples could be false nega-
tives. Payne et al. (2015) found cytotoxic responses for fracturing fluid
samples related to coal seam gas activities in Australia, which correlates
to the cytotoxic activity found in the concentrated fracturing fluid sam-
ple FF1c. A lower concentration factor and/or a further dilution of the
original fracturing fluid and flowback samples would improve these re-
sults. Furthermore, duplicate testing would indicate which responses
are reproducible, providing more trust in the significance of the ob-
served effects.

Regarding the CALUX test results for p53 pathway activation with-
out metabolic activation of S9 liver enzymes, the responses for all sam-
ples fall below the limit of quantification, so the response is considered
negative. For genotoxicity with metabolic activation of S9 liver en-
zymes, the results show clear positive responses for the direct fracturing
fluids, for the direct flowback sample of day 6, and for the three concen-
trated flowback samples. There are no clear positive responses for the
PAH tests. For oxidative stress, only the three concentrated flowback
samples showed clear positive responses. Similar results were found
by Tang et al. (2014) for groundwater samples related to coal seam
gas activities, where low levels of PAH and no genotoxic responses
were detected. Moreover, Crosby et al. (2018) also found positive re-
sponses for cytotoxicity and oxidative stress responses in fracturing
fluid and flowback samples. Although the bioassay results pose some
challenges as to their significance due to the presence of possible false
negatives and false positives, there are clear positive responses for
genotoxicity and/or oxidative stress for the fracturing fluid, flowback
and some groundwater samples.

The Ames tests and the P53 CALUX tests both evaluate genotoxicity,
however they assess different molecular events (DNAmutations vs. cel-
lular response to genotoxicity, respectively). The in vitro bioassay re-
sults do not necessarily mean that the samples showing positive
responses pose a risk to environmental or human health, but may
point to the presence of compounds in these samples at a certain con-
centration directing adverse effects. Chemical identification, determina-
tion of exact concentrations, and thorough toxicological evaluation of



Table 2
(left) Number of peaks related to fracturing additives (add) and subsurface contaminants (subs) detected in the fracturing fluid and flowback samples including the number of peaks de-
tected at a concentration higher than TTC= 0.1 μg/L; (right) Results for the Ames fluctuation test (TA98 and TA100+/-S9), P53 CALUX+/-S9 (genotoxicity response with and without
metabolic activation of liver enzymes), PAH CALUX (dioxin receptor activation) and Nrf2 CALUX (oxidative stress response) for all fracturing fluid, flowback, groundwater and procedure
blank samples; + indicates a statistically significant positive response, − a negative response, (+) a possible false positive response and (c) a possible false negative response due to
cytotoxicity.

Chemical analyses results Bioassay testing results

Positive ionisation Negative ionisation Ames test CALUX test

Samples #Peaks (add/subs) NTTC (add/subs) #Peaks (add/subs) NTTC (add/subs) TA98-S9 TA98 + S9 TA100-S9 TA100 + S9 P53-S9 P53 + S9 PAH Nrf2

FF (total) 2431/0 547/0 1489/0 1480/0
FF1d 88/0 88/0 39/0 39/0 + − (+) − − + (+) (+)
FF2d 535/0 535/0 16/0 16/0 − − (+) − − + (+) −
FF1c 2322/0 324/0 1468/0 1459/0 (c) (c) (c) (c) − (+) (+) (+)
FW (total) 2297/330 2285/325 374/1279 310/1250
FWD1d 301/23 301/23 8/11 8/11 − − (+) − − − (+) (+)
FWD2d 93/3 93/3 0/1 0/1 + − (+) − − − (+) (+)
FWD3d 14/12 14/12 7/6 7/6 − − − − − − (+) (+)
FWD5d 80/4 80/4 4/5 4/5 − − (+) − − − (+) (+)
FWD6d 11/3 11/3 13/17 13/17 − − − − − + (+) (+)
FWD7d 57/5 57/5 5/7 5/7 − − (+) − − − (+) (+)
FWD8d 77/5 77/5 6/5 6/5 − − (+) − − − (+) (+)
FWD1c 2158/207 2116/199 242/1037 222/1002 (c) (c) (c) (c) − + − +
FWD6c − − 282/1092 219/1027 (c) (c) (c) (c) − + − +
FWD7c 1988/235 1987/235 290/1088 241 /1045 (c) (c) (c) (c) − + − +
GW nd.
20B-1 − − − − − − (+) (+)
20B-2 − − − − − (+) (+) (+)
2B-1 − − − − − (+) (+) (+)
2B-2 − − − − − − (+) (+)
20A-1 − − − − − (+) (+) (+)
20A-2 − − − + − (+) (+) (+)
2A-1 − − − − − (+) (+) (+)
2A-2 − − + − − − (+) −
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these chemicals are required for further risk assessment. Even though
the results of the concentrated flowback samples seem to suggest that
a high number of detected peaks result in positive responses for the bio-
assays, this cannot be confirmed by the results of the other samples. The
concentrated fracturing fluid showed a high number of peaks but did
not give any positive response for the bioassays. Additionally, the direct
fracturing fluid sample 1 and the direct flowback samples of day 2 and 6
showed relatively fewdetected peaks and resulted in positive responses
for at least one of the bioassays. The number of detected peaks does not
seem to explain the toxicity responses found in the fracturing fluid and
flowback samples. The presence of potentially toxic chemicalsmay only
exert adverse effects if exposure at sufficiently high concentrations
would occur, against which various precautionary measures are being
taken. Fracturing fluids and flowbackfluid can pose challenges to drink-
ing water utilities, with regard to removing the polar organic com-
pounds. Proper treatment of the gas extraction related waters is
therefore necessary before storage, recycling or release into the envi-
ronment. Data show that incidents which might lead to contamination
may occur (Maloney et al., 2017; Patterson et al., 2017). The associated
spills are diluted after entering surface or groundwater. The highest
concentration found in both ionisation modes is 37.9 mg/L IS-eq,
which corresponds to the direct fracturing fluid 2 sample in positive
ionisation. This means that depending on the hazardous properties of
the compound in question, a dilution of roughly 4*105 may be needed
to reach safe drinking water concentration levels based on the generic
TTC-level for non-genotoxic substances in case of a contamination
with this fracturing fluid. To illustrate this, the Dommel river in the
Netherlands is considered as an example of a possible polluted water
body by this fracturing fluid with a lowest mean water flow of 3 m3/s
(Waterschap de Dommel, n.d.; Butkovskyi et al., 2017). Assuming an
acute average spill volume of 24 m3 for surface spills of fracturing
fluid (Faber et al., 2018), it would take a maximum of 35 days to reach
safe concentration levels of the surfacewater in the Dommel. The sever-
ity of the adverse health effects however would depend on the toxico-
logical properties of the chemical in question. The average surface spill
volume is based on US data because no public data within the
Netherlands is available. The associated US spill frequency is
0.02–0.1%/well/year (Faber et al., 2018). The safety regulation related
to oil and gas activities is stricter in the Netherlands than in the US
and therefore spill frequency will likely be lower in the Netherlands
compared to the US.
4. Conclusion

The aim of this study is to provide insight into the possible risk
that the hydraulic fracturing related chemicals pose to human and
environmental health. The chemical results show high concentra-
tions for fracturing fluid and flowback samples that may potentially
be of concern. Moreover, limited environmental fate data points to-
wards persistence in water. The bioassay results show clear
genotoxic and oxidative stress responses for fracturing fluid and
flowback samples. These results provide a scientific justification for
the measures currently in place related to the handling, transport
and treatment of hydraulic fracturing related waters, to avoid ad-
verse environmental and human health impacts. This study is how-
ever limited to one hydraulic fracture in a single location. More
studies on similar hydraulic fracturing related activities in the
Netherlands and in the EU in general are needed in order to gain a
full overview of the potential risks associated with hydraulic fractur-
ing in the EU.

There is a lack of literature and experimental studies on the analysis
of hydraulic fracturing samples within the European context. This re-
search starts to fill this knowledge gap by providing a chemical charac-
terisation and bioassay assessment for tight gas and for the Dutch
situation. Thismay serve as a basis for an environmental risk assessment
for Dutch drinkingwater companies aswell as a comparison to shale gas
operations and to other geographical locations.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2019.06.354.
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