43 research outputs found

    Terahertz Spectroscopy for Gastrointestinal Cancer Diagnosis

    Get PDF
    In this chapter, we present a number of sensitive measurement modalities for the study and analysis of human cancer-affected colon and gastric tissue using terahertz (THz) spectroscopy. Considerable advancements have been reached in characterization of bio-tissue with some accuracy, although too dawn, and still long and exhaustive work have to be done towards well-established and reliable applications. The advent of the THz-time-domain spectroscopy (THz-TDS) test modality at a sub-picosecond time resolution has arguably fostered an intensive work in this field’s research line. The chapter addresses some basic theoretical aspects of this measurement modality with the presentation of general experimental laboratory setup diagrams for THz generation and detection, sample preparation aspects, samples optical parameters calculation procedures and data analysis

    Multivariate analysis and artificial neural network approaches of near infrared spectroscopic data for non-destructive quality attributes prediction of Mango (Mangifera indica L.)

    Get PDF
    There is a need for fast and reliable quality and authenticity control tools of pharmaceutical ingredients. Among others, hormone containing drugs and foods are subject to scrutiny. In this study, terahertz (THz) spectroscopy and THz imaging are applied for the first time to analyze melatonin and its pharmaceutical product Circadin. Melatonin is a hormone found naturally in the human body, which is responsible for the regulation of sleep-wake cycles. In the THz frequency region between 1.5 THz and 4.5 THz, characteristic melatonin spectral features at 3.21 THz, and a weaker one at 4.20 THz, are observed allowing for a quantitative analysis within the final products. Spectroscopic THz imaging of different concentrations of Circadin and melatonin as an active pharmaceutical ingredient in prepared pellets is also performed, which permits spatial recognition of these different substances. These results indicate that THz spectroscopy and imaging can be an indispensable tool, complementing Raman and Fourier transform infrared spectroscopies, in order to provide quality control of dietary supplements and other pharmaceutical products

    Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range

    Get PDF
    Due to the high polarizability of finite-length carbon nanotubes (CNTs) in the quasi-static regime, they can be considered as building blocks for the fabrication of high dielectric constant material. Our theoretical estimations, based on an effective medium approach and solutions of a boundary value problem for individual CNT, predict that composite materials comprising short-length CNTs can have very high dielectric constants (up to 300) and low dielectric loss tangents (below 0.03) in the terahertz range. In order to prove this, 500–1000 nm thick films comprising single- and multi-walled CNTs of both long (0.5–2 μm) and short (0.1–0.4 μm) lengths have been fabricated. The analysis, based on the time-domain terahertz spectroscopy in the range 0.2–1.0 THz, demonstrated a decrease in the dielectric loss tangents of the CNT-based materials with a reduction in CNT length. In the terahertz range, the films comprising short-length CNTs had a relative effective permittivity with a large real part (25–136) and dielectric loss tangent (0.35–0.60)

    Shielding effects in thin films of carbon nanotubes within microwave range

    Get PDF
    The electromagnetic shielding properties of thin films comprising different types of carbon nanotubes (CNTs) were analysed in the microwave frequency range (26–36 GHz). A comparative analysis of the shielding properties was achieved for films based on long and short single-, double- and multi-walled CNTs. The experimental results proved that long-length single-walled CNTs demonstrate the highest interaction with the electromagnetic (EM) field, thereby providing the best shielding efficiency. At the same time, double-walled CNTs demonstrate a higher level of absorption ability (50%) along with the overall high EM shielding efficiency (88%), which makes them attractive for using in nanoelectronics screens as they produce the smallest secondary EM pollution

    Polarized photoreflectance and photoluminescence spectroscopy of InGaAs/GaAs quantum rods grown with As2 and As4 sources

    Get PDF
    We report photoreflectance (PR) and photoluminescence (PL) investigations of the electronic and polarization properties of different aspect ratio (height/diameter) InGaAs quantum rods (QRs) embedded in InGaAs quantum wells (QWs). These nanostructures were grown by molecular beam epitaxy using As2 or As4 sources. The impact of the As source on the spectral and polarization features of the QR- and QW-related interband transitions was investigated and explained in terms of the carrier confinement effects caused by variation of composition contrast between the QR material and the surrounding well. Polarized PR and PL measurements reveal that the polarization has a preferential direction along the [ 110] crystal axis with a large optical anisotropy of about 60% in the (001) plane for high aspect ratio (4.1:1) InGaAs QRs. As a result, in PL spectra, the transverse magnetic mode dominated (110)-cleaved surfaces (TM[001] > TE[110]), whereas the transverse electric mode prevailed for (110)-cleaved surfaces (TM[001] < TE[110] ¯ ). This strong optical anisotropy in the (001) plane is interpreted in terms of the hole wavefunction orientation along the [ 110] direction for high aspect ratio QRs

    Coexistence of bloch and parametric mechanisms of high-frequency gain in doped superlattices

    No full text
    The detailed theoretical study of high-frequency signal gain, when a probe microwave signal is comparable to the AC pump electric field in a semiconductor superlattice, is presented. We identified conditions under which a doped superlattice biased by both DC and AC fields can generate or amplify high-frequency radiation composed of harmonics, half-harmonics, and fractional harmonics. Physical mechanisms behind the effects are discussed. It is revealed that in a general case, the amplification mechanism in superlattices is determined by the coexistence of both the phase-independent Bloch and phase-dependent parametric gain mechanisms. The interplay and contribution of these gain mechanisms can be adjusted by the sweeping AC pump strength and leveraging a proper phase between the pump and strong probe electric fields. Notably, a transition from the Bloch gain to the parametric gain, often naturally occurring as the amplitude of the amplified signal field grows, can facilitate an effective method of fractional harmonic generation in DC–AC-driven superlattices. The study also uncovers that the pure parametric generation of the fractional harmonics can be initiated via their ignition by switching the DC pump electric field. The findings open a promising avenue for the advancement of new miniature GHz–THz frequency generators, amplifiers, and dividers operating at room temperature
    corecore