6,416 research outputs found
Single-Particle Properties from Kohn-Sham Green's Functions
An effective action approach to Kohn-Sham density functional theory is used
to illustrate how the exact Green's function can be calculated in terms of the
Kohn-Sham Green's function. An example based on Skyrme energy functionals shows
that single-particle Kohn-Sham spectra can be improved by adding sources used
to construct the energy functional.Comment: 9 pages, 3 figure
Report of International NanoSPD Steering Committee and statistics on recent NanoSPD activities
The Université de Lorraine in Metz, France, is the selected site for the 6th International Conference on Nanomaterials by Severe Plastic Deformation (NanoSPD6) following a series of five earlier conferences. This introductory paper reports on several major developments in NanoSPD activities as well as on very recent NanoSPD citation data which confirm the continued growth and expansion of this important research area. Close attention is given to the topics of workshops, conferences and seminars organized during these last three years as well as on books and reviews published prior to the NanoSPD6 conference. A special concern of the committee is in introducing and discussing the appropriate terminology to be applied in this new field of materials science and engineerin
Shear-induced α → γ transformation in nanoscale Fe-C composite
High-resolution transmission electron microscopy and three-dimensional atom probe observations show clearly that a reverse transformation of body-centred cubic ferrite to face-centred cubic austenite occurs during severe plastic deformation of a pearlitic steel resulting in a nanocrystalline structure, something that never occurs in conventional deformation of coarse-grained iron and steels. The driving force and the mechanisms of this reverse transformation are discussed. It is shown that nanostructure and shear stresses are essential for this process, and the results confirm molecular dynamics predictions of such transformations in nanocrystalline iron
Grain boundary segregation in UFG alloys processed by severe plastic deformation
Grain boundary segregations were investigated by Atom Probe Tomography in an
Al-Mg alloy, a carbon steel and Armco\trademark Fe processed by severe plastic
deformation (SPD). In the non-deformed state, the GBs of the aluminium alloy
are Mg depleted, but after SPD some local enrichment up to 20 at.% was
detected. In the Fe-based alloys, large carbon concentrations were also
exhibited along GBs after SPD. These experimental observations are attributed
to the specific structure of GBs often described as "non-equilibrum" in ultra
fine grained materials processed by SPD. The grain boundary segregation
mechanisms are discussed and compared in the case of substitutional (Mg in fcc
Al) and interstitial (C in bcc Fe) solute atoms
- …
