6,306 research outputs found

    Matter instability in modified gravity

    Get PDF
    The Dolgov-Kawasaki instability discovered in the matter sector of the modified gravity scenario incorporating a 1/R correction to Einstein gravity is studied in general f(R) theories. A stability condition is found in the metric version of these theories to help ruling out models that are unviable from the theoretical point of view.Comment: 4 pages, revtex, to appear in Phys. Rev. D. In the revised version, an error concerning the Palatini version of these theories has been corrected and the references update

    Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals.

    Get PDF
    Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia

    What are College Students\u27 Opinions on Housing as a Human Right?

    Get PDF

    Subnormalized states and trace-nonincreasing maps

    Get PDF
    We investigate the set of completely positive, trace-nonincreasing linear maps acting on the set M_N of mixed quantum states of size N. Extremal point of this set of maps are characterized and its volume with respect to the Hilbert-Schmidt (Euclidean) measure is computed explicitly for an arbitrary N. The spectra of partially reduced rescaled dynamical matrices associated with trace-nonincreasing completely positive maps belong to the N-cube inscribed in the set of subnormalized states of size N. As a by-product we derive the measure in M_N induced by partial trace of mixed quantum states distributed uniformly with respect to HS-measure in MN2M_{N^2}.Comment: LaTeX, 21 pages, 4 Encapsuled PostScript figures, 1 tabl

    Ising transition in the two-dimensional quantum J1J2J_1-J_2 Heisenberg model

    Full text link
    We study the thermodynamics of the spin-SS two-dimensional quantum Heisenberg antiferromagnet on the square lattice with nearest (J1J_1) and next-nearest (J2J_2) neighbor couplings in its collinear phase (J2/J1>0.5J_2/J_1>0.5), using the pure-quantum self-consistent harmonic approximation. Our results show the persistence of a finite-temperature Ising phase transition for every value of the spin, provided that the ratio J2/J1J_2/J_1 is greater than a critical value corresponding to the onset of collinear long-range order at zero temperature. We also calculate the spin- and temperature-dependence of the collinear susceptibility and correlation length, and we discuss our results in light of the experiments on Li2_2VOSiO4_4 and related compounds.Comment: 4 page, 4 figure

    Transforming nonlocality into frequency dependence: a shortcut to spectroscopy

    Full text link
    Measurable spectra are theoretically very often derived from complicated many-body Green's functions. In this way, one calculates much more information than actually needed. Here we present an in principle exact approach to construct effective potentials and kernels for the direct calculation of electronic spectra. In particular, the potential that yields the spectral function needed to describe photoemission turns out to be dynamical but {\it local} and {\it real}. As example we illustrate this ``photoemission potential'' for sodium and aluminium, modelled as homogeneous electron gas, and discuss in particular its frequency dependence stemming from the nonlocality of the corresponding self-energy. We also show that our approach leads to a very short derivation of a kernel that is known to well describe absorption and energy-loss spectra of a wide range of materials

    Ab initio GW electron-electron interaction effects in Quantum Transport

    Full text link
    We present an ab initio approach to electronic transport in nanoscale systems which includes electronic correlations through the GW approximation. With respect to Landauer approaches based on density-functional theory (DFT), we introduce a physical quasiparticle electronic-structure into a non-equilibrium Green's function theory framework. We use an equilibrium non-selfconsistent G0W0G^0W^0 self-energy considering both full non-hermiticity and dynamical effects. The method is applied to a real system, a gold mono-atomic chain. With respect to DFT results, the conductance profile is modified and reduced by to the introduction of diffusion and loss-of-coherence effects. The linear response conductance characteristic appear to be in agreement with experimental results.Comment: 5 pages, 4 figures, refused by PR

    Multipartite fully-nonlocal quantum states

    Full text link
    We present a general method to characterize the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully-nonlocal according to a given partition, as well as being (genuinely) multipartite fully-nonlocal, are derived. These conditions allow us to identify all completely-connected graph states as multipartite fully-nonlocal quantum states. Moreover, we show that this feature can also be observed in mixed states: the tensor product of five copies of the Smolin state, a biseparable and bound entangled state, is multipartite fully-nonlocal.Comment: 5 pages, 1 figure. Version published in PRA. Note that it does not contain all the results from the previous version; these will be included in a later, more general, pape
    corecore