4,172 research outputs found

    Re-visiting the One-Time Pad

    Full text link
    In 1949, Shannon proved the perfect secrecy of the Vernam cryptographic system,also popularly known as the One-Time Pad (OTP). Since then, it has been believed that the perfectly random and uncompressible OTP which is transmitted needs to have a length equal to the message length for this result to be true. In this paper, we prove that the length of the transmitted OTP which actually contains useful information need not be compromised and could be less than the message length without sacrificing perfect secrecy. We also provide a new interpretation for the OTP encryption by treating the message bits as making True/False statements about the pad, which we define as a private-object. We introduce the paradigm of private-object cryptography where messages are transmitted by verifying statements about a secret-object. We conclude by suggesting the use of Formal Axiomatic Systems for investing N bits of secret.Comment: 13 pages, 3 figures, submitted for publication to IndoCrypt 2005 conferenc

    The transmission of sonic boom signals into rooms through open windows. Part 1 - the steady state solution

    Get PDF
    Pressure field steady state calculations for sonic boom signal transmission into rooms through open window

    Propagation of high amplitude higher order sounds in slightly soft rectangular ducts, carrying mean flow

    Get PDF
    The resonance expansion method, developed to study the propagation of sound in rigid rectangular ducts is applied to the case of slightly soft ducts. Expressions for the generation and decay of various harmonics are obtained. The effect of wall admittance is seen through a dissipation function in the system of nonlinear differential equations, governing the generation of harmonics. As the wall admittance increases, the resonance is reduced. For a given wall admittance this phenomenon is stronger at higher input intensities. Both the first and second order solutions are obtained and the results are extended to the case of ducts having mean flow

    Astrophysical fluid simulations of thermally ideal gases with non-constant adiabatic index: numerical implementation

    Get PDF
    An Equation of State (\textit{EoS}) closes the set of fluid equations. Although an ideal EoS with a constant \textit{adiabatic index} Γ\Gamma is the preferred choice due to its simplistic implementation, many astrophysical fluid simulations may benefit from a more sophisticated treatment that can account for diverse chemical processes. Here, we first review the basic thermodynamic principles of a gas mixture in terms of its thermal and caloric EoS by including effects like ionization, dissociation as well as temperature dependent degrees of freedom such as molecular vibrations and rotations. The formulation is revisited in the context of plasmas that are either in equilibrium conditions (local thermodynamic- or collisional excitation- equilibria) or described by non-equilibrium chemistry coupled to optically thin radiative cooling. We then present a numerical implementation of thermally ideal gases obeying a more general caloric EoS with non-constant adiabatic index in Godunov-type numerical schemes.We discuss the necessary modifications to the Riemann solver and to the conversion between total energy and pressure (or vice-versa) routinely invoked in Godunov-type schemes. We then present two different approaches for computing the EoS.The first one employs root-finder methods and it is best suited for EoS in analytical form. The second one leans on lookup table and interpolation and results in a more computationally efficient approach although care must be taken to ensure thermodynamic consistency. A number of selected benchmarks demonstrate that the employment of a non-ideal EoS can lead to important differences in the solution when the temperature range is 500−104500-10^4 K where dissociation and ionization occur. The implementation of selected EoS introduces additional computational costs although using lookup table methods can significantly reduce the overhead by a factor 3∼43\sim 4.Comment: 17 pages, 10 figures, Accepted for publication in A&
    • …
    corecore