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ABSTRACT

Context. An Equation of State (EoS) is a relation between thermodynamic state variables and it is essential for closing the set of
equations describing a fluid system. Although an ideal EoS with a constant adiabatic index Γ is the preferred choice due to its
simplistic implementation, many astrophysical fluid simulations may benefit from a more sophisticated EoS (temperature-dependent
Γ) which can account for diverse chemical processes.
Aims. In the present work we first review the basic thermodynamical principles of a gas mixture in terms of its thermal and caloric
EoS by including fundamental processes such as atomic translation and ionization as well as molecular vibrations and rotations.
The formulation is revisited in the context of plasmas that are either in equilibrium conditions (local thermodynamic- or collisional
excitation- equilibria) or described by non-equilibrium chemistry coupled to optically thin radiative cooling.
We then describe a numerical implementation to model thermally ideal gases obeying a caloric EoS with non-constant adiabatic index
in Godunov-type numerical schemes.
Methods. We address the problems of conversion between internal energy and pressure, sound speed computation (needed by the
Riemann solver) and thermodynamic consistency. Two alternative numerical approaches are presented. The first one, best suited for
EoS in analytical form, employs root-finder methods while the second one leans on lookup table and spline interpolation and can be
also used for EoS in tabulated form.
Results. The two approaches are compared in terms of speed, accuracy. Our results indicate that the inclusion of a general EoS is
better handled by using tables (whenever possible) and it involves a code slow down of a factor of ... Using tables gives a speed up of
a factor... for some problems and it is more general for EoS that do not have analytical form.

Key words. Equation of state – Methods: numerical – Atomic processes – Molecular processes – Shock waves

1. Introduction

The equation of state is a fundamental characteristic of a sub-
stance which makes possible the application of the general prin-
ciples of thermodynamics to physical objects. For a complete
mathematical description of dynamics in fluids, the conservation
laws of mass, momentum and energy. must be supplemented
with an EoS. Numerical simulations of astrophysical systems
such as inter-stellar medium, planetary atmospheres, stellar evo-
lution, jets and outflows, require inter-play of various thermal,
radiative and chemical processes. For such complex systems, us-
ing a simple ideal (or an isothermal) EoS would be considered
as a serious limitation. A consistent description for such systems
demands the use of a general EoS that can account thermal and
chemical processes.

Thermodynamic state of the gas plays a pivotal role in gov-
erning the fragmentation of self-gravitating and turbulent molec-
ular clouds (e.g., Spaans & Silk 2000; Li et al. 2003; Jappsen
et al. 2005). The balance of heating and cooling in molecular
clouds is approximated using a poly-tropic EoS, p ∝ ρΓ. Multi-
ple smoothed particle hydrodynamical simulations with different
adiabatic indices, 0.2 < Γ < 1.4 (Spaans & Silk 2000) was used
to show that the degree of fragmentation decreases with increas-
ing value of Γ (Li et al. 2003). Jappsen et al. (2005) showed
that the thermal properties of the gas determines the stellar mass
function (IMF) using a piecewise poly-tropic EoS. Such empiri-

cal forms of EoS in general depend on chemical abundances and
complex atomic and molecular physics.

Numerical simulations studying thermo-chemical evolution
of early structure formation used an effective adiabatic index,
Γeff , to relate internal energy with thermal pressure (e.g. Yoshida
et al. 2006; Glover & Abel 2008). The value of Γeff is estimated
from number fractions of chemical species treating the chemical
composition as an ideal mixture. In the context of disk instabil-
ity leading to formation of gas giant planets, Boley et al. (2007)
pointed out the importance of incorporating isotopic forms of
molecular hydrogen, H2, as well the molecular physics (rotation
and vibration) under thermodynamic equilibrium in the estimate
of internal energy. A more complex EoS taking into account ion-
ization from atomic hydrogen and helium along with molecular
dissociations is used to study the envelopes of young planetary
cores (D’Angelo & Bodenheimer 2013).

The goal of this paper is to outline a consistent numerical
framework for the implementation of a more general equation of
state in the context of the magnetohydrodynamics (MHD) equa-
tions. Our formulation accounts for different physical processes
such as atomic ionization and recombination, molecular dissoci-
ation, etc... and it is suitable under equilibrium conditions (local
thermodynamic or collisional ionization equilibria) as well as
for non-equilibrium optically thin radiative cooling (Teşileanu
et al. 2008). The numerical method is implemented as part of the
PLUTO code (Mignone et al. 2007) and it is built while ensur-
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ing thermodynamical consistency, accuracy and computational
efficiency.

Our starting point are the ideal MHD equations written in
conservation form:

∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

∂(ρv)
∂t

+ ∇ ·
(
ρvvT − BBT

)
+ ∇pt = 0 (2)

∂B
∂t
− ∇ × (v × B) = 0 (3)

∂E
∂t

+ ∇ ·
[
(E + pt) v − (v · B) B

]
= Λ (4)

∂(ρXk)
∂t

+ ∇ · (ρXkv) = S k (5)

where ρ is the mass density, v is the fluid velocity, B is the mag-
netic field, pt = p + B2/2 is the total pressure accounting for
thermal (p) and magnetic (B2/2) contributions. The total energy
density E is given by

E = ρe +
1
2
ρv2 +

1
2

B2 . (6)

An additional EoS relating the internal energy density ρe with
p and ρ must be specified. This issue is addressed in §2. Dis-
sipative effects have been neglected for the sake of exposition
although they can be easily incorporated in this framework.

The paper is organized as follows, in §2 the basic principles
and formulations of general EoS used for the present work are
described. The numerical framework is discussed in §3. The re-
sults obtained from various test problems are outlined in §4 and
the concluding remarks are summarized in §5 .

2. Equation of State

2.1. Thermodynamical Principles

A physical system is characterized by extensive and intensive
properties. An intensive variable is the one that does not depend
on the bulk properties (volume) of the system, and an exten-
sive variable is one that does. From the thermodynamic point of
view, equilibrium states of physical systems, macroscopically,
are completely defined by the relation between the differentials
of extensive properties like the internal energy U and the volume
V along with the definition of the entropy S (U, V). This is known
as the first law of thermodynamics and is given by

dU = TdS − pdV. (7)

Here, the temperature T and pressure p are referred to as inten-
sive properties. An EoS of such a system is defined as a relation
among intensive and extensive properties. It can be broadly clas-
sified into two types. The thermal EoS is defined as the expres-
sion of pressure in terms of volume and temperature p = p(V, T).
Whereas, the caloric EoS specifies the dependence of the inter-
nal energy of the system U on volume V and temperature T.

In general, these relations are derived from empirical results
and are used to estimate various thermodynamic properties of a
system. Theoretically, statistical principles can be applied to de-
scribe such a system on basis of its microscopic processes using

partition function, Z. For example, the macroscopic thermody-
namic quantities can be obtained from the following standard
relations,

p = kBT
(
∂lnZ
∂V

)
T

U = kBT 2
(
∂lnZ
∂T

)
V
,

(8)

where, kB is the Boltzmann constant. The above equation essen-
tially provides two forms of EoS in terms of partition function.

In the present work, our focus will be mainly for thermally
ideal gas. These gases have their thermal EoS same as that of an
ideal gas. However, their caloric EoS can have non-linear depen-
dence on temperature based on various chemical processes taken
into consideration (see §2.2). Though, the analysis presented
here is limited to thermally ideal gas, the numerical implemen-
tation described in this work can also be extended to study real
gases obeying thermal EoS given by van der Waals.

2.2. Thermally Ideal Gas

Consider a case of classical monoatomic ideal gas, where, the
partition functionZ is given by,

Z =
1

N!

(mkBT
2π~2

)3/2

V

N

, (9)

where, m is the mass of the particle, ~ the Planck constant and
N the total number of non-interacting particles. On substituting
Eq.9 in Eq.8, we obtain the standard forms of EoS for a classical
ideal gas,

pV = NkBT

U = 3
2 NkBT = CVT,

(10)

where, the specific heat capacity at constant volume, CV , is in-
dependent of temperature. On extending this analysis further to
diatomic ideal gas, the partition functionZ contains contribution
from rotational and vibrational degrees of freedom, in addition
to the translational motion. In such a case, the internal energy U
derived from Eq.8 is given by,

U =
3
2

NkBT + NkBT + Φvib(T ) (11)

where the additional contribution of NkBT comes from rotational
degree of freedom and Φvib(T ) denotes term due to vibrational
motion which has a non-linear dependence on temperature. On
considering the diatomic molecule with two degrees of freedom
(i.e, translational and rotational) and neglecting the non-linear
dependence due to vibration, one obtains a single relation for
both monoatomic and diatomic gas by adopting a constant Γ,
pV = (Γ − 1)U, (12)
where the value of Γ = 5/3 for monoatomic gas and 7/5 for di-
atomic gas (see Eqns. 10 and 11). Note that in deriving Eq. 12,
it is also assumed that the diatomic gas is thermally ideal and
follows the same thermal EoS (i.e., pV = NkBT) as that of a
classical monoatomic gas. The constant Γ that depends on de-
gree of freedom in the gas is essentially the ratio of isobaric to
isochoric specific heats and also determines the sound speed, cs,
in the gas,

cs =

√(
Γp
ρ

)
, (13)

where, the density of the gas ρ = (Nµm/V) , µ being the mean
molecular weight.
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2.3. Partially Ionized Gas

Astrophysical fluids and processes are more complex than a sim-
ple system of ideal gas described above. For example, the Inter-
Stellar Medium (ISM) that largely comprises of hydrogen and
helium is affected by many physical and chemical processes viz.,
collisional ionization, dissociation, shocks, radiation etc. In such
a scenario, an heuristic approach of treating it as an monoatomic
ideal gas with with constant Γ = 5/3 will only be approximate
and fail to account for the feedback of the above processes on
thermal properties of the gas and thereby also on its inter-linked
dynamics.

Here we consider a simplest case of partially ionized gas of
pure hydrogen (in atomic form). The thermodynamics of such
a system is different than that of a completely ionized (or com-
pletely neutral) gas. The differences occur due to non-constant
number of free particles and the additional energy required dur-
ing the process of ionization. The internal energy U is therefore
given by (Clayton 1984),

U =
3
2

NkBT + χH NHII . (14)

In addition to the standard form of translational energy, contri-
bution from ionization potential, χH , is included in Eq. 14. Here,
NHII is the number of ionized hydrogens and the total number of
free particles, N = NH + 2NHII , is the sum of number of neutral
hydrogens and two times that of NHII due to charge neutrality.

In regions of dense stellar interior, one can approximate con-
ditions to be in local thermodynamic equilibrium. For such a sys-
tem, the different fractions of pure hydrogen gas has a non-linear
dependence on temperature and density of the gas using the Saha
equation. As a result, even the internal energy, specific heats and
the adiabatic index Γ will depend on the ionization fraction. For
example, the adiabatic index, Γ will smoothly change from its
monoatomic value of 5/3 to 1.13 for a hydrogen gas with an ion-
ization fraction of 50% at T = 104 K (Clayton 1984). Such a sig-
nificant change in Γ is due to the fact that some part of the energy
input goes into ionization rather than increasing the temperature
of the gas. Therefore, using a constant value of Γ for such dense
stellar interiors will considerably overestimate the temperature
of gas.

2.4. Hydrogen Gas Thermodynamics at Equilibrium

Numerical simulations of various astrophysical problems up-till
now have limited the use of EoS either in the adiabatic or the
isothermal (cs = constant) limit. Though, in some cases, these
assumptions may be valid but in general they may give large
deviations from the real behavior. However, in recent years, a
large emphasis is given on applying an EoS that could take into
account some of the complex astrophysical processes. Specifi-
cally, studies related to planet formation in accretion disks have
started to incorporate EoS that can account for contribution from
dissociation of molecular hydrogen, ionization of atomic hydro-
gen and helium and radiation (e.g., Boley et al. 2007; D’Angelo
& Bodenheimer 2013) under an assumption of local thermody-
namic equilibrium (LTE).

In LTE, processes like ionization and dissociation for hydro-
gen are given by,

H + e− 
 H+ + 2e−

H + H 
 H2,
(15)

respectively. Following D’Angelo & Bodenheimer (2013), we
define the degree of dissociation y and degree of ionization x as,

y =
ρHI

ρHI+ρH2

x =
ρHII

ρHI+ρHII
,

(16)

where, ρHI is the density of atomic hydrogen, ρH2 the density of
molecular hydrogen and ρHII the density of ionized hydrogen.
In the limit of LTE, one assumes that level populations due to
ionization (and dissociation) process follow Boltzmann excita-
tion formula and the ejected free electrons thermalize to attain
Maxwell-Boltzmann velocity distribution corresponding to sin-
gle gas temperature. This is generally true in regions of high
density like that of the solar interior. In such cases, the degree of
ionization using Saha equations is given as follows,

x2

1 − x
=

mH

Xρ

(
mekBT
2π~2

)3/2

e−13.60eV/(kBT ). (17)

and also degree of dissociation, y can be obtained in a similar
manner (Black & Bodenheimer 1975),

y2

1 − y
=

mH

2Xρ

(
mHkBT

4π~2

)3/2

e−4.48eV/(kBT ), (18)

The gas is essentially a mixture of hydrogen in all forms
(atoms, ions & molecules) with a mass fraction of X, Helium
with a mass fraction of Y and negligible fraction of metals.
For such a composition, the total density of gas is defined as
ρ = (N/V)µmH = nµmH , where n is the number density and the
mean molecular weight, µ, can be expressed as (e.g., Black &
Bodenheimer 1975),

µ

4
=

[
2X(1 + y + 2xy) + Y

]−1 . (19)

Such a gas mixture is further assumed to be ideal and thus the
pressure p of the gas can relate to the temperature T as, p =
ρkBT/(µmH).

The most crucial part is to express a caloric EoS that can
account for contributions from various degrees of freedom and
processes like ionization and dissociation. Thus, the gas internal
energy density, (ρe)gas = (U/V), of the mixture is given by,

(ρe)gas = (εH2 + εHI + εHII + εH+H + εHe)
kBTρ
mH

, (20)

where, each term in the parenthesis is dimensionless and can
be obtained from an appropriate partition function Z and using
Eq.10. Tab. 1 summarizes the different contribution to the gas
internal energy. In case of molecular hydrogen, εH2, terms that
correspond to vibrational and rotational degree of freedom are
also considered. These terms are evaluated using the partition
function of vibration, ζv, and rotation ζr, that have explicit and
a non-linear dependence on temperature. Additionally, the rota-
tional partition function also takes into account the para/ortho
H2 spin states (Boley et al. 2007). Thus, the total gas internal en-
ergy density has a non-linear dependence on the temperature T
and density through x and y (see Eqns. 17 & 18). In such a case,
the sound speed in the gas adopts a more general definition,

cs =

√(
Γ1 p
ρ

)
, (21)
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Table 1. Summary of different contributions to the gas internal energy (ρe)gas, which is expressed using Eq.20. (see Black & Bodenheimer (1975);
D’Angelo & Bodenheimer (2013))

Term Expression Description
εHI 1.5X (1 + x) y Translational energy for hydrogen
εHe 0.375Y Translational energy for helium
εH+H 4.48 eV X y/(2kBT ) Dissociation energy for molecular hydrogen
εHII 13.6 eV X x y/(kBT ) Ionization energy for atomic hydrogen

εH2
X (1−y)

2

[
1.5 + T

ζv

dζv
dT + T

ζr

dζr
dT

]
Internal energy for molecular hydrogen

where, Γ1 is the first adiabatic exponent. For an ideal gas with a
constant CV , Γ1 = γ, however, in the general case it is given by,

Γ1 =
1

CV (T )

(
p
ρT

)
χ2

T + χρ, (22)

where, CV is obtained by taking the derivative of specific gas in-
ternal energy, egas, with temperature and χT and χP are referred
to as temperature and density exponents (see D’Angelo & Bo-
denheimer (2013)).

The left and middle panels of Fig.1 shows the variation of
µ(ρ,T ) (Eq. 19) and gas internal energy in ergs with temperature,
T, for four values of density in g cm−3 respectively. The values of
µ are bounded between an upper bound ∼2.3, corresponding to
a fully molecular medium at low temperatures, to a small value
of ∼ 0.6 at high temperatures representing fully ionized medium.
The transition between these bounds is smooth at high densities
ρ = 10−4 g cm−3, while, its steep with a formation of a plateau at
T ∼ 103 K for low density values (black curve). The first transi-
tion occurs in a temperature range where the molecules begin to
dissociate to form atomic hydrogen. Also, the temperature where
the atomic hydrogen ionize show a distinct fall in values of µ.
These two temperature ranges are clearly seen in the curve of
internal energy with temperature T as a steep bumps. Physically,
they indicate that the energy at these temperatures is going to
dissociate or ionize the gas, instead of heating the gas and so the
temperature remains approximately constant. Apart from these
transition regions, the dependence of (ρe)gas(mH/ρ) is linear and
increases monotonically with gas temperature. The last panel of
the same figure shows the variation of first adiabatic exponent,
Γ1 with temperature. At low temperatures, the gas behaves as a
monoatomic ideal gas undergoing adiabatic process with a Γ1 =
5/3. This is also true at very high temperatures where the gas
comprises of ions and electrons. As anticipated from above ar-
guments of rise in internal energy, we see a sharp decrease in
values of Γ1 from its maximum value of 5/3 to close to unity
(corresponding to an isothermal limit) for a low density (black
curve), while the red curve corresponding to high density shows
a single dip in value at T > 104 K.

Such an EoS that accounts for ionization and dissociation for
dense accretion disks in the LTE limit is being implemented in
the PLUTO code and its effects on dynamics has been studied in
details using standard test problems. Further, not all astrophysi-
cal problems can be approximated to be in the LTE limit. A clas-
sical case is that of a jet, where the recombination time scales are
comparable to that of dynamical time. In such a scenario, LTE
assumptions become invalid and a non-equilibrium approach has
to be adopted as described in the following section.

2.5. Non-Equilibrium Hydrogen Chemistry

Astrophysical flows in HII regions, supernova remnants, star
forming regions are some classical examples where optically
thin cooling time scales are comparable to the dynamical time.
In such environments, ionization and dissociation fractions are
far from equilibrium and their estimation based on Saha frac-
tions can give large errors. Thus in such non-equilibrium regions,
number density of various species are determined by solving the
chemical rate equations, which have a general form as,

dni

dt
=

∑
j,k

K j,kn jnk − ni

∑
j

Ki, jn j, (23)

where, n is the number density, K j,k is the rate of formation of
ith specie from all j and k species and Ki, jis the rate of destruc-
tion of ith specie due to all j species. In dilute regions such as
the solar corona, Eq. 23 can be simplified by setting dni/dt = 0,
as the time scales are such that a balance is always maintained
between collisional ionization and radiative recombination. This
is known as Coronal equilibrium or Collisional Ionization Equi-
librium (CIE). Such an equilibrium is different from LTE in two
aspects. It is only valid in dilute plasma unlike the LTE where
high density environments are required and the ionization frac-
tion are estimated using Eq.23 in steady state and not with Saha
fractions.

For the present purpose, we have focused only in evolving
the chemical equations involving atomic and molecular hydro-
gen. This prescription of molecular cooling has been added to
the PLUTO code to study the chemical evolution of hydrogen
species. In particular, the total hydrogen number density nH com-
prises of contribution from atomic and molecular hydrogen i.e.,
nH = nHI + 2.0*nH2 + nHII. The contribution to electrons, ne,
comes from the ionized hydrogen, nHII and from small but fixed
fraction of metals (Z ∼ 10−4). In addition to hydrogen, helium
is present with a fixed mass fraction of 0.027. The total number
of particle density, i.e, ntot = nH + nHe + ne is always conserved
as the mass density ρ = µ ntot mp is treated as a conservative
variable in the code.

The chemical evolution of molecular, atomic and ionized hy-
drogen is governed by equations listed in Tab. 2. The code tracks
the formation and destruction of these three species based on the
temperature dependent reaction rates specified and updates their
respective fractions viz.,

XHI =
nHI

nH
; XH2 =

nH2

nH
; XHII =

nHII

nH
(24)

Even in this slightly more complex network of reactions, one can
estimate concentration of each species in equilibrium (by setting
the time derivation of Eq.23 to zero). Fig. 2 shows the varia-
tion of such equilibrium concentration with temperature. The
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Fig. 1. Variation of Mean molecular weight µ, internal energy density of the gas (ρe)gas and first adiabatic index Γ1 with temperature. The different
colored curves represent four values of fixed density in g cm−3, viz., 10−4 (red),10−8 (green), 10−12 (blue) and 10−16(black). The values of (ρe)gas
and Γ1 are obtained at equilibrium between ortho and para hydrogen.

Table 2. Summary of the chemistry reaction set. T is the temperature in Kelvin, TeV is the temperature in electron-volts, T5 = T/1 × 105 and T2 =
T/100

No. Reaction Rate Coefficient (cm3s−1) Reference 1

1. H + e− → H+ + 2e− k1 = 5.85 × 10−11 T 0.5 exp(-157,809.1/T)/(1.0 + T 0.5
5 ) 1

2. H+ + e− → H + hν k2 = 3.5 × 10−12(T/300.0)−0.8 2
3. H2 + e− → 2H + e− k3 = 4.4 × 10−10T 0.35exp(−102, 000.0/T) 3
4. H2 + H→ 3H k4 = 1.067 × 10−10T 2.012

eV (exp(4.463/TeV)−1((1. + 0.2472TeV)3.512)−1 4
5. H2 + H2 → H2 + 2H k5 = 1.0 × 10−8exp(−84, 100/T) 2

6. H + H
dust
−→ H2 k6 = 3.0 × 10−17 √T2(1.0 + 0.4

√
T2 + 0.15 + 0.2T2 + 0.8T 2

2 ) 5

hydrogen molecule dissociation temperature which lies around
T ∼ 3 × 103 K and ionization temperature, T ∼ 104 K, is very
well evident from regions of transitions between species in the
curve. Such equilibrium values based on temperatures are essen-
tial to initialize fractions and are used in case of Sod tube test
(see Sec.4.1).

For regions where neither CIE or LTE is applicable, a gen-
eral approach has to be established. Here, in addition to the time
dependent estimate of number density, proper treatment should
be carried out to evolve the internal energy that should also ac-
count for losses due to optically thin cooling. Such a cooling im-
plies that the emitted photons due to different physical processes
(e.g., ionization, metal line cooling etc.) freely stream (without
diffusion) away from the region where they are produced and
eventually escape into the surroundings resulting into an effec-
tive decrease in total gas internal energy. Thus, in addition to the
conservative evolution of total energy (Eq. 4), the code accounts
for the loss in gas internal energy due to cooling,

d(ρe)
dt

= −Λ(n,T ), (25)

where, Λ is the radiative cooling function due to losses from
various processes described below,

Λ = ΛCI + ΛRR + Λrotvib + ΛH2diss + Λgrain, (26)

where, ΛCI and ΛRR are losses due to collisional ionization
and radiative recombination respectively (Teşileanu et al. 2008).
The remaining terms, Λrotvib , ΛH2diss and Λgrain are associated

with molecular hydrogen and represent losses due to rotational-
vibrational cooling, dissociation and gas-grain processes (Smith
& Rosen 2003).

In presence of cooling, the gas internal energy, (ρe)gas, will
be different from that defined by Eq. 20. As in this case, only
contributions from due translational and internal degrees of free-
dom (from H, He and H2) will be incorporated, while contri-
butions from various processes like ionization, dissociation, ro-
vibrational cooling of H2 molecule etc., will be taken care on the
right hand side of Eq.25 in the Λ term. Therefore, Eq.20 now
becomes,

(ρe)gas = (εH2 + εHI + εHe)
kBTρ
mH

, (27)

where, expressions for each of the internal energy components
are given in table 1. Such a division of thermodynamic terms to
left and right hand side of Eq. 25 has also been applied to study
the role of molecular hydrogen in primordial star formation (e.g.,
Palla et al. 1983; Omukai & Nishi 1998).

3. Numerical Implementation

PLUTO solves the MHD equations (1)–(5) using flux-
conserving form where the basic building block is

Un+1 = Un − ∆tL(U) (28)

where U = (ρ, ρv, B, E, ρXk) is our vector of conservative vari-
ables, see Mignone et al. (2007), Teşileanu et al. (2008) and
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Fig. 3. The figure shows different components of radiative cooling func-
tions with various colored lines. The values are obtained for and initial
number density, n0 = 105 cm−3 and fractions mentioned in the figure.
The sum of all the components is drawn with a black dashed line to
obtain the value of Λ in ergs cm−3 s−1 following Eq. 26

Mignone et al. (2012) for details. The right hand side opera-
tor L(U) carries the contributions of flux differences and source
terms and it is more conveniently computed in terms of primitive
variables customarily defined as V = (ρ, v,B, p). The conversion
between U and V requires obtaining pressure from internal en-

ergy or viceversa. While the internal energy density is readily
obtained from Eq. (6), the conversion p → ρe and its inverse
ρe → p strictly depends on the choice of the caloric equation of
state.

For the constant-Γ EoS, these transformations take a small
fraction of the computational time as the relation between inter-
nal energy and pressure is straoghtforward and given by

ρe =
p

Γ − 1
. (29)

Note also that the temperature does not explicitly appears in the
previous definition.

The situation is different, however, for a more general EoS
where a closed-form expression between pressure and internal
energy cannot be written explictly but it requires the computa-
tion of the temperature T . From the considerations given in the
previous sections, in fact, we can write the thermal and caloric
equations of state as

p =
ρT

kBmuµ(X)

e = e(T,X)
(30)

The explicit dependence on the temperature introduces two ad-
ditional intermediate steps, namely:

1. During the conversion from primitive to conservative (p →
ρe) one first needs to compute T from the thermal EoS (first
of Eq. 30):

T =
p
ρ

kBmuµ(X) (31)

Under non-equilibrium conditions, µ = µ(X) is a known
function of the gas composition and Eq. (31) can be solved
directly. Under LTE or CIE, on the other hand, X = X(T, ρ) is
a function of density and temperature and Eq. (31) becomes
a nonlinear equation in the temperature variable.

2. During the inverse transformation (ρe → p), one must first
solve for the temperature by inverting

e = e(T,X) , (32)

where, under equilibrium assumptions, the chemical com-
position if a function of density and temperature, i.e., X =
X(T, ρ).

In order to cope with the numerical inversion of Eqns. (31)
and (32) we have considered and implemented two different so-
lution strategies that we describe in the following sections.

3.1. Inversion using root-finders

The first inversion algorithm has general validity and consists
of inverting the thermal (in equilibrium conditions) and caloric
EoS numerically using an iterative root-finder algorithm to re-
cover, respectively, T = T (p, ρ) and T = T (e,X). This results
in increased computational cost inasmuch the internal energy is
an expensive function to evaluate. Among different root-solvers
not requiring the knowledge of the derivative, we have found the
Brent root-finder to be a practical and efficient method.
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3.2. Inversion using Tables

A second and more efficient strategy can be used when the inter-
nal energy is a function of temperature and density alone (which
is typically the case under equilibrium conditions, CIE or LTE)
and it consists of employing pre-computed tables of pressure and
internal energy, e.g., {p}i j = p(Ti, ρ j) and {ρe}i j = ρe(Ti, ρ j)
where i and j are the table indices. For convenience, the ta-
bles are constructed using equally-spaced node values in log T
and log ρ so that tabulated values are computed for log Ti/T0 =
i∆ log T and log ρ j/ρ0 = j∆ log ρ.

When T and ρ are known, pressure and internal energy
can then be retrieved by using lookup table followed by two-
dimensional interpolation between adjacent node values. We first
locate the table indices i and j by a simple division:

i = floor
(

log T/T0

∆ log T

)
, j = floor

(
log ρ/ρ0

∆ log ρ

)
(33)

where T and ρ are the input values at which interpolation is de-
sired. Internal energy (and similarly pressure) is then computed
as

ρe(T, ρ) = Si, j(xi)(1 − y j) + Si, j+1(xi)y j (34)

where xi = (T − Ti)/(Ti+1 − Ti) and y j = (ρ − ρ j)/(ρ j+1 − ρ j)
are normalized coordinates between adjacent nodes while S is
an interpolating spline.

Conversely, when ρe and ρ are known, Eq. (34) must be in-
verted for T . To this end, we first locate the index j using the
second of (33). We then perform a binary search on the one-
dimensional arrays {ρe}i′, j and {ρe}i′, j+1 with i′ running from 0 to
Nx − 1 and j given by the previous equation. If the two searches
result in the same index i, then the value of ρe must fall some-
where inside i and i + 1. Otherwise we repeat the binary search
on the intermediate array q = {ρe}i′, j(1 − y j) + {ρe}i′, j+1y j for
imin ≤ i′ ≤ imax (imin and imax being the minimum and maximum
indices of the previous search) to nail down the correct index
value i.

3.2.1. On the choice of the interpolant

For linear interpolation, we simply use

Si, j = {ρe}i+1, jxi + {ρe}i, j(1 − xi) , (35)

and Eq. (34) becomes a bilinear interpolant. Linear interpola-
tion, however, may generate thermodynamically inconsistent re-
sults since the positivity of the fundamental derivative is not pre-
served. This generates compund waves in the solution and can
also violate the convexity properties of the caloric EoS. The dra-
matic consequence is the generation of compund waves in the
Riemann fan and therefore incorrect results even for 1D prob-
lems. This is usually the case when few points are used in the
temperature grid.

In order to improved the quality of interpolation, we have
also implemented a cubic spline when interpolating in the tem-
perature grid so that

Si, j(x) = ai, jx3
i + bi, jx2

i + ci, jxi + di, j , (36)

where the coefficients a, b, c and d are computed by ensuring that
the cubic is strictly monotonic in the interval [Ti,Ti+1], see Wol-
berg & Alfy (2002). Conversely, the inverse mapping requires
computing T from ρ and ρe and this is done by solving Eq. (34)
for x (that is T ). The solution is straightforward for bilinear in-
terpolation while, for a monotone cubic spline, the root is found

very efficiently using the Newton-Raphson method on the unit
interval. The tabulated approach has found to be faster than the
general root finder method giving considerable speedups up to a
factor of 4 for certain problems.
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Fig. 4. The figure shows the variation of density ρ (red), Pressure P
(green), and velocity vx (blue) along the X-axis (in code units) for a
standard Sod Tube test (without explicit cooling) at time τ = 0.2. The
values obtained using an ideal EoS are shown as solid lines while that
obtained using a GammaLaw EoS are shown as dashed lines.

4. Results : Test Problems

The effects on inclusion of a gamma-law EoS on standard test
problems with and without inclusion of explicit cooling (or
chemical network) are described here.

4.1. Sod Shock Tube

The first test is that of a standard Sod Shock Tube. This is essen-
tially an one-dimensional test using the Hydrodynamical (HD)
module of the code. The numerical domain ranges from x = 0.0
to x = 1.0 having a uniform resolution, ∆x = 1.0e-3. The ini-
tial setup has a static fluid (Vx = 0.0) with different temperatures
across the interface at x = 0.5. The hotter region in the left has
a temperature of TL ∼ 3852 K with pressure, PL and density, ρL
set to 1.0 in non-dimensional units. The region to the right of
interface has a temperature TR ∼ 3345 K with PR = 0.1 and ρR =
0.125. The final state at time, τ = 0.2, for all relevant hydrody-
namic quantities is shown figure.

The Fig. 4 compares the spatial variation of density, pressure
and velocity for an Ideal EoS (solid lines) with that of PVTE
Law dashed lines) without the inclusion of explicit cooling. A
standard shock tube solution comprising of a rarefaction wave,
contact discontinuity and a right ward propagating shock is ob-
tained, as expected for an Ideal EoS. However with the PVTE
Law, the shock tube solution is considerably different. The speed
of shock propagation is much slower in case of PVTE Law, as
seen from an offset in the solid and dashed curves of velocity
(blue). Further, the offset in pressure (green) leftward of the in-
terface suggests that even the propagation of rarefaction wave
is slower with the PVTE Law. The most dramatic difference is
seen in the evolution of density (red) curve at the contact dis-
continuity. The ideal solution of right-ward propagation contact
discontinuity is absent in case of PVTE Law. Instead, a com-

pression leading to an enhancement of density behind the shock
interface is seen in the density structure with PVTE Law.

The major difference between the two EoS, is the distribution
of heat into internal energy. In case of an Ideal EoS, the internal
energy has contribution only from translation degree of freedom,
which in 3D amount to three different directions of motions re-
sulting in 10. While in case of PVTE Law, additional degrees
of freedom due to rotation and vibration of di-atomic molecules
(like H2 at low temperatures) also contribute to the internal en-
ergy. Therefore, the energy resulting from an impact a shock in
case of PVTE Law will not only populate the three 3 transla-
tional degrees of freedom, but also the vibrational and rotational
levels of the molecules. Additionally, part of the energy will also
be utilized for processes like dissociation and ionization that are
accounted for in the formulation of PVTE Law. Therefore the
amount of energy available to increase the temperature will be
less in case of PVTE Law as compared to that of an Ideal EoS.
Since, the fractions of ions and molecules are always assumed to
be at LTE for such kind of EoS, the overall effect on application
of PVTE Law EoS is that of an equilibrium cooling.

The above physical picture is further verified by the com-
parison done in the Fig. 5 between atomic (star) and molecular
(solid) PVTE Law at two different temperatures (see 2.4) assum-
ing a pure hydrogen gas (i.e., no helium or metals). The left panel
shows the final state of density (red) and temperature (green) at
a lower initial temperature of 120 K left of the interface and 95 K
on the right. Molecular hydrogen H2 is present at such low tem-
peratures, thus the temperature obtained from PVTE Law that
accounts for thermodynamical processes of molecules, show a
different density structure from the one which just accounts for
ionization. Also, the temperature behind the shock for atomic
PVTE Law is around 160µ, µ being the mean molecular weight.
While that for molecular PVTE Law is reduced to 140µ due to
equilibrium cooling described above. Additionally, the density
behind the shock is more condensed as expected from arguments
described above for the PVTE law that accounts for presence of
molecules in the system. These differences in the shock structure
completely vanish when the initial temperature for the left side
of interface at x = 0.5 raised to about 1.35 × 104 K At such tem-
peratures, a complete dissociation of molecular hydrogen takes
place and the molecular PVTE law essentially becomes same as
that of the atomic PVTE law. This is indicated from the right
panel of Fig. 5, where solutions from these different EoS over-
laps with each other.

The results from the sod shock tube tests ran with explicit
non-equilibrium cooling (see 2.5) are shown in Fig. 6. The two
panels represent quantities for different initial conditions for
temperature on either sides of the interface. The initial values
of TL and TR for the colder left panel are 400 K and 200 K re-
spectively. Whereas, these initial values for the right panels are
4500 K and 3500 K respectively. The initial fractions of different
hydrogen species, (i.e, XHI , XH2 and XHII) are set to their equi-
librium values corresponding to the temperatures on both sides
of the interface (see Fig 2). In both panels, solution obtained us-
ing an Ideal EoS is shown as solid lines, whereas that obtained
using PVTE Law is marked as stars. The difference in the posi-
tion of the shock for the two EoS considered here is very much
evident in the left panel. Further, the cooling behind the shock
for an ideal EoS is more efficient as compared to that for PVTE
Law as seen from two temperature curves. On the other hand,
there is negligible difference between the quantities obtained for
both EoS on the right panel. Also, the cooling behind the shock
is stronger as the temperatures decreases from about 427 K to ∼
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Fig. 5. This figure compares the PVTE Law from DAngelo (solid line) and that for Ionized Hydrogen (star marker) for two different temperature
values. The left is the profile for density (red) and ratio of temperature to mean molecular weight (µ) (green) for low temperature value. The same
profiles for high temperatures are shown in the right panel.
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Fig. 6. The figure shows variation of density (red) and temperature (green) at the final stage of Sod shock tube test for cases which have included
explicit cooling. The solid lines represent values obtained from Ideal EoS, while those obtained using PVTE Law are marked as stars. The left and
right panel differ in the value of their initial temperature on either sides of the interface at x = 0.5.

200 K. This is also evident from the compressed density struc-
ture.

Such a difference can be attributed to different dependence
of internal energy on the gas temperature for cases in thermal
equilibrium and that where explicit non-equilibrium cooling is
involved. As discussed in Sec. 2.5), with explicit cooling, contri-
bution from terms that are related to degrees of freedom are the
ones included to internal energy, U. While, terms corresponding
to molecular dissociation or ionization are treated as a compo-
nents to explicit cooling function, Λ, which are assumed to be
radiated away are are common to both EoS. In case, when the
initial temperatures on either side of the interface are low (left
panel, fig 6), the terms in the internal energy that correspond
to molecular degrees of freedom play a vital role. As a result,
in case of PVTE Law, part of the energy produced by due to
shocks goes in populating these degrees of freedom, while the
rest is used to raise the gas temperature. While in case of Ideal
EoS, all the energy produced due to shocks can in principle be

used to increase the temperature. Since, in this way more en-
ergy is available to raise the gas temperature for an Ideal EoS
as seen from the temperature at the shock surface of 150 K as
compared to 140 K for PVTE Law. Such a colder gas obtained
with PVTE Law also shows more compression as compared to
its Ideal counterpart as seen from the density variation. Addi-
tionally, since the cooling is more effective for larger tempera-
tures, the temperature behind the shock decreases more rapidly
for ideal EoS, while its fall is relatively more gradual for PVTE
Law.

In case when the initial temperatures are between 3500-
4500 K , i.e., where molecular hydrogen dissociates, the thermo-
dynamics is governed by components related to molecular dis-
sociation in the cooling function. Since they are the same of both
EoS, very slight difference is observed in the evolution of shock
structure at such high temperatures. Physically, this suggests that
for gas behind a strong shock discontinuity, translational degrees
of freedom are the first to adopt to change. The internal rotational
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and vibrational degrees of freedom of H2 molecule do not seem
to play any role. Thereby for gas just behind a sharp discontinu-
ity, it is appropriate to adopt an adiabatic index γ = 5/3. This is
consistent with studies of dissociation due to J-type shocks (e.g.,
Flower et al. (2003)).

In summary, various cases treated for the study of a standard
shock tube test elucidates the critical importance of treating tem-
perature dependent EoS both in case when the system is in equi-
librium and also when explicit radiative cooling is involved. In
the next sections, we will extend the application of general EoS
to some 2D test problems providing further physical insights.

4.2. Gravitational Collapse

The effect of PVTE Law EoS on one-dimensional gravitational
collapse of a molecular core is studied under LTE with this test.
The initial sub-critical core suspended in a hot and less dense
environment does not undergo a complete collapse but rather os-
cillate avoiding extremely large densities at the center, which are
difficult to resolve without adaptive mesh refinement. The nu-
merical domain extending up to a radial distance of r0 = 0.1 pc
is initialized with a constant density, ρ0 = 1.66×10−19 g cm−3.
The pressure in the domain is set such that the temperature of
the initial molecular core is initialized to ∼ 40 K. In case of an
ideal EoS, a constant value of adiabatic index, Γ = 1.4 is chosen
in consistency with fully molecular gas, whereas, for the PVTE
Law EoS, Γ1 is estimated using Eq.22. Axisymmetric boundary
conditions are set at r = 0. The ambient medium (r > r0) is in
pressure equilibrium with the molecular core, but is hotter due
to density contrast, ρamb/ρ0 = 0.65. The ambient material is in-
jected from the outer boundary with a radial inflow velocity of

the form vr = v|r0

√(
r0
r

)
. The self gravitational potential is calcu-

lated self-consistently as described in Mignone (2014).

At the onset of collapse, the core behaves in a very similar
manner for both EoS. The unstable constant density core under-
goes a gradual collapse from outside resulting in a steady in-
crease of density in the inner parts. In addition to the density,
the pressure (and therefore the temperature) also increases grad-
ually towards the center of the core. The dynamical evolution
of the core begins to differ around 0.6 free fall time where the
PVTE Law deviates from the Ideal behavior. The collapse con-
tinues till about a free fall time beyond which the core rebounds
back. Fig. 7 shows the comparison in density and temperature
structure of the core at 1.2 free fall time. From the left panel it is
evident that the central core obtained with PVTE Law EoS is 5
times denser than that obtained from Ideal EoS. In addition, the
core resulting from an Ideal EoS is slightly more extended in ra-
dial direction. This is further clarified from the position of shock
seen in the temperature plot (right panel; solid lines). The tem-
perature in the center of the core reaches around 300 K for both
cases. However, the outer region with ideal EoS, (T ∼ 3000 K) is
two times hotter than that obtained from PVTE Law EoS. This is
essentially because, in case of PVTE Law EoS, the gravitational
energy released on account of the collapse goes into disassocia-
tion of molecules rather than increase of thermal pressure. This
is reflected in the value of adiabatic index (right panel; dashed
lines) which reaches close to an isothermal limit of unity in this
outer region. Lack of thermal pressure support, facilitates fur-
ther collapse and results in a more dense and compact core as
compared to that obtained from Ideal EoS.

4.3. Blast Wave

The newly implemented PVTE Law EoS in case of thermal equi-
librium is tested for a 2D Spherical blast wave. The problem is
solved on cartesian grid in a square domain of size, -0.5 < x , y
< 0.5 which is resolved with 300×300 grid points. The blast is
initiated at the center of the domain (x = y = 0.0), by providing
an initial contrast in density and pressure, η and χ respectively,
between the blast region (r0 < 0.1) and the surrounding ambient
medium. For the present case, we choose η = 10.0 and χ = 20.0.
At the onset of the blast, a shock wave which maintains its spher-
ical shape emerges from the central blast region. Fig. 8 shows the
logarithmic values of density at time τ = 0.15. The panel on the
left correspond to solution obtained using Ideal EoS, while that
obtained using PVTE Law at thermal equilibrium is shown in
the middle panel. The density structure in the right panel is also
obtained using PVTE Law but with a high order interpolation,
(i.e., Piecewise Parabolic) method (PPM) instead of the Piece-
wise Linear method (PLM) used to produce density structure in
the middle panel.

On comparing the left and the middle panel, one can clearly
identify the differences between the two EoS considered here.
As expected from the study of shock sod tube test, the size of
spherical blast wave is smaller in case of solution obtained from
PVTE Law. This is due to the lower shock propagation speed as
compared to that with an Ideal EoS. Further, the effect of PVTE
Law in compression of fluid just behind the shock is very clearly
seen in the middle panel. Such a compression is totally absent in
the solution obtained using an Ideal EoS. The incorporation of
temperature dependent terms in the estimate of internal energy
and using it to consistently derive the temperature is therefore
verified to mimic equilibrium cooling.

Another striking difference between the left and middle
panel of Fig. 8, is the formation of prominent ripples in case
of Ideal EoS between the intermediate compressed region and
outer rarefied medium at four distinct places. This is a typical
feature due to noise from the Cartesian grid. However, these rip-
ples are not as prominent in the middle panel. This indicates the
applied solver becomes slightly more diffusive with PVTE Law
and can not capture typical features due to Cartesian grid, as ef-
fectively. However, with a higher order interpolation schemes
like the PPM, the PVTE Law begins to show features more
clearly (see right panel of Fig. 8).

4.4. Axisymmetric MHD Jets

The effect of PVTE Law on dynamics has also been studied for
propagation of axisymmetric magnetized jets in 2D. A cylin-
drical domain of size (r, z) = (10.0, 60.0) with a resolution of
96×576 grid points has been used for this test problem. Initially,
the domain is filled with a static unmagnetized ambient medium
with a density of ρa = 104cm−3 and a temperature of 2500 K.
A magnetized jet is injected into this static medium from the
base (z = 0) through a nozzle of radius, Rjet ∼ 167 AU. Dense
jet material which has a density contrast of 5 with respect to
the ambient medium is injected with a velocity of 100 km s−1.
The magnetic field in the jet is purely a toroidal one with a field
strength ∼ 10 µG at the axis. The total pressure in the jet is the
sum of the thermal (kept same as the ambient medium) and mag-
netic pressure. The material in the jet is colder than the ambient
medium with a temperature of 1000 K.

As the colder jet enters into the hot ambient medium, it im-
mediately results into a formation of bow-shock that pushes the
ambient material to it sides. This processed material acquires
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Fig. 7. Dynamical evolution of one-dimensional gravitational collapse with two different EoS. In each of the four panels, red colored lines represent
values for Ideal EoS, while the quantities obtained with PVTE Law are shown with black colored lines. Top Left panel shows the logarithmic
values of normalized density with radial distance. Temperature in Kelvin and normalized radial velocity are shown in top right and bottom left
panel respectively. The evolution of adiabatic index for PVTE law is shown in the bottom right panel, while its value for Ideal remains fixed at all
times to Γ = 1.4. These curves exhibit values of respective quantities at 4 different times, τ relative to the free fall time τ f f , as shown in the legend.

high temperatures and forms the cocoon as shown in the left
panel of Fig. 9. The two panels of the figure show the jet struc-
ture at time, τ = 4.0 using an Ideal EoS (left) and that obtained
from PVTE Law (right). Each panel is further divided into two

halves. The left half show the logarithmic values of temperature
in Kelvin, while the right panel shows the corresponding value
of density in code units. For both the EoS considered here, the
maximum temperature is obtained at the bow-shock. Its value for
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Fig. 8. Comparison of logarithmic values of density ρ (in code units) for a hydrodynamic, spherical blast wave at time τ = 0.15. The left panel
shows the final shock structure (see text) with an ideal EoS and using linear interpolation and 2nd order Runge-Kutta method for time stepping.
The density obtained using the same numerical methods but with a GammaLaw EoS (assuming CIE) is shown in the middle panel. The right panel
is same as the middle one except parabolic interpolation and 3rd order Runge-Kutta time-stepping algorithm are used.

ideal EoS is 1.9e5 K while that for PVTE Law is about a factor
of 4 small, 4.8e4 K. On the contrary, the maximum density for
the jet obtained with PVTE Law is 1.7 × 106cm−3, higher than
its Ideal counterpart by a factor of 10.

In addition to the above quantitative differences for the two
EoS considered, the jet structures also differ as evident from the
Fig. 9. Firstly, the jet head in the left panel has travelled a larger
distance in the same time interval as compared to the jet in right
panel. Also, the jet ejected using an Ideal EoS, shows a more
broader structure at the base while it tapers close to the bow
shock. Whereas, a much narrow jet is obtained on using a PVTE
Law EoS. Further, the processed hot cocoon material has larger
width (in density) in case of jet with an Ideal EoS as compared to
that obtained from PVTE Law. This is because the total energy
in the cocoon gets distributed into other forms of internal energy
(see equation 20) in case of PVTE Law, which effectively cools
the cocoon material resulting into its collapse into a thin layer
on the sides of the jet. This same equilibrium cooling effect is
also seen at the bow-shock for the jet obtained with PVTE Law.
Here, the bow-shock is much more turbulent and forms dense
condensates as compared to that obtained for a jet with an Ideal
EoS.

4.5. Pulsed Molecular Jets

The application of non-equilibrium cooling due to molecular hy-
drogen with PVTE Law is studied using hydrodynamic propaga-
tion of supersonic pulsations (that eventually form shocks) into
molecular medium. This is seen as a common phenomenon in
molecular jets ejected from young stellar source. In this test our
focus is mainly to study differences in shock structure due to
different EoS, therefore, we choose a narrow radial extent (< jet
radius) to avoid formation of back-flow and associated instabili-
ties usually seen with such jets. A complete study of instabilities
due to cooling and EoS in molecular jets will be taken up in the
forthcoming paper.

The test is done using the Adaptive Mesh refinement mod-
ule developed for PLUTO code (Mignone et al. 2012). The two-
dimensional domain in cartesian co-ordinates extends radially
from -0.5 rjet to 0.5 rjet and has a vertical extent up to 32 rjet. The
domain has a base grid of 4×128 points and with the highest re-
finement level of 5 resulting in an equivalent grid of 128×4096
zones. Fully molecular (XH2 ≈ 0.5) ambient medium represent-
ing a young star-forming core fills the initial domain with a
constant temperature of 50 K. The ambient number density de-
creases with vertical extent, ρamb(z) ∝ z−2, its value at z = 0 set
to be 104 cm−3. An over-dense jet is injected from the nozzle
at z = 0 with a jet radius , rjet ∼ 167 AU. At the nozzle, the jet
has a density three times more than the ambient medium. Addi-
tionally, the temperature at the nozzle is set at 1000 K resulting
in jet pressure to be 60 times higher than the medium (at z =0).
The initial hydrogen fractions at the nozzle are estimated based
on equilibrium shown in fig.2. The injection velocity has sinu-
soidal perturbations of the form, vjet= v0 (1.0 + 0.25*sin(2.0π
t/Tp)), with base velocity, v0 is set to be 80 km s−1 and pulsation
period, Tp of 30 years.

At the onset of simulation, the primary pulse that enters into
the domain from the nozzle forms the strongest shock as the tem-
perature reaches up to 105 K where hydrogen can ionize forming
HII. The successive pulses see a much less pressure jump form-
ing a relatively weaker shocks with temperatures of few 1000 K.
As the cooling times in such jets are small as compared dynam-
ical time, the material behind the shock start to radiatively cool
as the pulses propagate in the molecular medium. As a result, the
initially formed shocks with a very thin width broadens due to
loss of energy. Top panel of fig. 10 shows the difference in den-
sity for intermediate shocks after τ ∼ 158 yr for two EoS consid-
ered here. The panel is divided into two halves and the common
color bar indicates that the maximum density reached is about
20 times its initial value. The upper half shows the density of
three pulses between 15.0rjet < z < 24.0rjet for PVTELaw EoS
and same for Ideal EoS is shown in the bottom half. For each
half, the variation in the shock width is evident with height due
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Fig. 9. Comparison of logarithmic values both of density, ρ (right half in blues) and temperature in Kelvin (left half in red) for a 2D axisymmetric
jet without explicit cooling. The left panel shows the jet structure with an ideal EoS, while, that obtained from a PVTELaw EoS (assuming CIE)
is shown in the right panel.

to losses in energy by cooling resulting in temperatures around
100 K behind the shock. In addition, a clear difference in the
width is also seen for each shock due to different EoS. Further,
one dimensional cuts for pressure and HI fractions at z ∼ 15.8
rjet are shown in the bottom panels.

The bottom panels of fig. 10 clearly shows the width of the
shock formed with PVTELaw is smaller as compared to one
formed with constant Γ EoS. Additionally, the peak HI fraction
density obtained from PVTELaw is about 65% times higher than
that obtained from Ideal EoS. The pressure obtained from PVTE
is also higher by 35% than its Ideal counterpart. A narrow shock
width and enhanced peak value of quantities seen in the shock
structure with PVTELaw is consistent with that obtained from
the Sod shock tube with cooling with temperatures around 100 K
(see left panel of fig. 6). However, the differences are less promi-
nent for primary shock and young shocks (pulsations that have
entered the domain), as temperature behind these shocks reach
up to 500 K to 1000 K, as seen in the right panel of fig. 6.

5. Summary and Conclusions

We have described an implementation of a thermodynamically
consistent EoS in PLUTO code. This chemical EoS, PVTELaw,
takes into account various atomic and molecular process both
in case of thermodynamic equilibrium and in presence of non-
equilibrium cooling. The use of such an EoS with non-constant
Γ is essential for a consistent study of astrophysical systems with
processes like dissociation, ionization and recombination play a
vital role.

The numerical implementation of caloric EoS like the
PVTELaw is done with a particular focus on thermally ideal gas,
however, it can be also extended to study real gases. Two differ-
ent strategies, viz. the general root finder and tabulated method,
are used to invert caloric EoS to obtain pressure from internal
energy at a given temperature and density. We have seen that in
certain test problems, the tabulated method achieves a speedup
to a factor of 4 with similar accuracy as compared to the root
finder method.
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Fig. 10. Results from the test studying the propagation of supersonic pulsations in molecular medium. The top panel compares the density obtained
for three intermediate shocks at time, τ = 158 yrs, from PVTELaw (top half) and Ideal EoS (bottom half). Radial cuts for HI density fraction and
pressure for the shock at z = 15.8 are shown in bottom left and right panels respectively. The red squares are used to represent values obtained
from Ideal EoS, while values obtained from PVTE Law are shown with black stars.

Further, we have highlighted the importance of spline in-
terpolation of tabulated values. As a bi-linear interpolation, al-
though relatively faster, can be thermodynamically inconsistent
producing composite waves.

The standard test of Sod shock tube clearly brings out the
difference between distribution of heat into internal energy for
the two EoS considered here. In case of mono-atomic Ideal EoS
(constant Γ) under the limit of local thermodynamic equilibrium,
the energy generated by impact of shock will be only be dis-
tributed into 3 translational degrees of freedom while with a gen-
eral caloric EoS, additional degrees of freedom are available due
presence of diatomic molecules. As a result, the heat generated
from shock with PVTE Law will not increase the temperature of
the gas instead populate rotational and vibrational levels. This
effectively results in equilibrium cooling of gas leading to com-
pression in density.

A similar physical effect is seen even in presence of non-
equilibrium cooling due to molecular hydrogen. In such a case,
terms related to degrees of freedom are added to the internal en-
ergy while the terms responsible for radiative cooling are added
as source term in form of a cooling function, Λ. The differences
in width of the shock and value of physical quantities due to
EoS, is enhanced for temperatures in range of 100, K. Whereas,
for higher temperatures these differences become small as the
evolution of internal energy is mainly governed by source terms
in the cooling function which are same for both EoS.

In summary, this general implementation of chemical and
thermodynamically consistent EoS will prove to be a useful tool
to study various astrophysical systems like planet formation,

molecular jets from young stars, gravitational collapse of molec-
ular cloud, galaxy formation due to cold flows etc.
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Appendix A: Cubic Interpolation

When a cubic spline is used, Eq. (34) is inverted in the following
way. First gather the coefficient of the two cubic in the interval
[y j, y j + 1]:

ãx3 + b̃x2 + c̃x + d̃ = 0 (A.1)

where
ã = ai, j(1 − y j) + ai, j+1y j

b̃ = bi, j(1 − y j) + bi, j+1y j

c̃ = ci, j(1 − y j) + ci, j+1y j

d̃ = di, j(1 − y j) + di, j+1y j − ρe

(A.2)

We then simplify the cubic as

x3 + αx2 + βx + γ = 0 (A.3)

where α = b̃/ã, β = c̃/ã, γ = d̃/ã.
The number of real roots of the cubic depends on the sign of

Q3 − R2, where

Q =
α2 − 3β

9
, R =

2α3 − 9αβ + 27γ
54

(A.4)

We distinguish among the following cases:

– when Q3/R2 > 1 the cubic has three real roots (Press et al.
2007) given respectively by:

x1 = −2
√

Q cos
(
θ

3

)
−
α

3

x2 =
√

Q
[
cos

(
θ

3

)
−
√

3 sin
(
θ

3

)]
−
α

3

x3 =
√

Q
[
cos

(
θ

3

)
+
√

3 sin
(
θ

3

)]
−
α

3

(A.5)

where

θ = acos

 R√
Q3

 . (A.6)

Since 0 ≤ θ ≤ π (by definition) it can be verified that the
three real roots given by Eq. (A.5) always satisfy x1 ≤ x2 ≤

x3. In addition, knowing that the spline is monotonically in-
creasing between Ti and Ti+1 (or x ∈ [0, 1]), we can easily
select the desired root:

– when ã > 0, only x1 or x3 can be valid roots since
the cubic is monotonically decreasing at x2. In order to
select the correct one, we look at the inflection point
x f = −α/3: when x f > 1 we pick x1 whereas if x f < 0 we
pick x3 (note that x f can never fall in the interval [0, 1]
by construction).

– when ã < 0, the cubic is monotonically increasing only
between the segment connecting the two extrema and
therefore x2 is the only admissible root.

– when Q3/R2 < 1, the cubic has only one real root which is
readily computed from

x1 = (A + B) −
α

3
(A.7)

where

A = −sign(R)

|R| 1 +

√
1 −

Q3

R2

1/3

, (A.8)

and B = Q/A.

Appendix B: Fundamental Gas Derivative &
Composite Waves

In section 3, two basic strategies used to numerically invert the
caloric EoS are described viz., the iterative root-finder method
and the lookup table method. Further for the lookup table
method, two different interpolation methods (linear and spline)
are used to connect the adjacent nodes. Interpolation methods
are indeed faster than the iterative root-finder but they need to
be formulated carefully to ensure consistency with thermody-
namic principles for an ideal poly-tropic gas. A through analysis
of each of these interpolation methods is done via an estimation
of fundamental gas derivative.

The fundamental gas derivative, denoted by G, is a non-
dimensional form that represents the non-linear variation of the
speed of sound with respect to density under constant entropy, s,
and can be expressed as

G = 1 +
ρ

c

(
∂c
∂ρ

)
s
. (B.1)

Here, ρ is the density and the speed of sound, c is given by

c =

√(
∂P
∂ρ

)
s

(B.2)

with P being the gas pressure. An ideal poly-tropic gas satis-
fying the thermodynamical constraints has the positive value of
G =

γ+1
2 > 0. This implies that such a gas has a convex isoen-

trope in the P-v plane (v being the specific volume) and will
only admit compression shock waves and expansion fans. How-
ever in case of real gases, G can as well have negative values
relating to finite interval of concave P-v isoentropes. This en-
ables such gases to admit composite waves in addition to stan-
dard expansion fans and compressive shock waves, whilst sat-
isfying the thermodynamical principles (e.g. Menikoff & Plohr
1989, and references therein). Using standard thermodynamic
relations, equation B.1 can be expressed as a function of ρ and
temperature, T, (Nannan et al. 2013)

G =
1

2c2ρ3 (Γ1 + Γ2 + Γ3) (B.3)

where the thermodynamic speed of sound, c, is computed from

c2 =

(
∂P
∂ρ

)
T

+
T

Cvρ2

(
∂P
∂T

)2

ρ

(B.4)

and the three Γ’s are given by,

Γ1 = ρ4
(
∂2P
∂ρ2

)
T

+ 2ρ3
(
∂P
∂ρ

)
T

(B.5)

Γ2 = 3
Tρ2

Cv

(
∂P
∂T

)
ρ

(
∂2P
∂ρ∂T

)
T,ρ

(B.6)

Γ3 =

 T
Cv

(
∂P
∂T

)
ρ

2

×

3 (
∂2P
∂T 2

)
ρ

+
1
T

(
∂P
∂T

)
ρ

1 − T
Cv

(
∂Cv

∂T

)
ρ

(B.7)

where, Cv denotes specific heat capacity at constant volume.
In particular, we present here the analysis done for interpola-

tion methods in case of ionized hydrogen gas, where the internal
energy is given by,

e =
3
2

kbT + χ (B.8)

Article number, page 15 of 17



A&A proofs: manuscript no. paper

3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75
log(T) [K]

10-1

100

101

102
In

te
rn

al
 E

ne
rg

y

3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75
log(T) [K]

10

5

0

5

10

Fu
nd

am
en

ta
l G

as
 D

er
iv

at
iv

e 
- G

0.0 0.2 0.4 0.6 0.8 1.0
X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

De
ns

ity
 ρ

Fig. B.1. Analysis of Linear interpolation method used in the estimate of internal energy. Left panel shows the transition region of the internal
energy defined by equation B.8. The exact value, black solid line is obtained from the iterative root-finder method and the piece-wise linearly
interpolated curve is shown as a red solid line. The fundamental gas derivative, G is shown in the middle panel. Here, again the black line is
derived using the estimate of internal energy using the iterative root-finder method, while the red curve is that obtained from linear interpolation.
Right panel compares the exact (black) and the interpolated (red) standard shock tube solution (only density at time τ = 0.2).

where, χ is the ionization energy for hydrogen. The variation of
internal energy for such a gas shows a sharp increase in value
around temperatures of 4000 K. The left panel of figure B.1
shows how this sharp transition is sampled if 256 points are
used for piecewise linear interpolation in the whole range. Ev-
idently the transition region is poorly sampled and the interpo-
lation curve shows presence of kinks. Further with linear inter-
polation, neither the first derivative or the second derivative of
internal energy with temperature is continuous. This is clearly
seen as spikes in the red curve of G (middle panel), which de-
pends on the values of these derivatives with temperature in form
of Cv. These kinks in the interpolated curve does not preserve the
actual convexity leading to negative values of G. In order words,
the sound speed across the kink does not remain continuous re-
sulting into composite waves as seen in the rarefaction branch
of the shock tube test in the right most panel of the figure (red
curve). The number of kinks are reduced on increasing the num-
ber of sample points for linear interpolation to 512, however, the
spikes still remain in the estimation of G due to discontinuous
derivatives and so does the composite waves in the solution of
shock test tube. While in case of spline interpolation with 512
points, the sampling of internal energy is more accurate and also
the derivatives are continuous giving a much smooth profile of G
(see figure B.2), which further translates into a single rarefaction
wave without any composite waves which overlaps with the one
obtained from iterative root-finder approach.
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Fig. B.2. Analysis of Spline interpolation method used in the estimate of internal energy and its comparison with piece-wise linear interpolation
with 512 sample points. Left panel shows the transition region of the internal energy defined by equation B.8. The exact value, black dashed line
is obtained from the iterative root-finder method, the piece-wise linearly interpolated curve is shown as a red solid line and the spline interpolant
is shown as a green solid line. The fundamental gas derivative, G is shown in the middle panel. Here, again the black line is derived using the
estimate of internal energy using the iterative root-finder method, while the red and green curve are obtained from linear interpolation and spline
interpolation respectively. Right panel compares the exact (black), the linearly interpolated (red) and the spline interpolated (green) standard shock
tube solution (only density at time τ = 0.2).
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