56 research outputs found
Imaging spontaneous currents in superconducting arrays of pi-junctions
Superconductors separated by a thin tunneling barrier exhibit the Josephson
effect that allows charge transport at zero voltage, typically with no phase
shift between the superconductors in the lowest energy state. Recently,
Josephson junctions with ground state phase shifts of pi proposed by theory
three decades ago have been demonstrated. In superconducting loops,
pi-junctions cause spontaneous circulation of persistent currents in zero
magnetic field, analogous to spin-1/2 systems. Here we image the spontaneous
zero-field currents in superconducting networks of temperature-controlled
pi-junctions with weakly ferromagnetic barriers using a scanning SQUID
microscope. We find an onset of spontaneous supercurrents at the 0-pi
transition temperature of the junctions Tpi = 3 K. We image the currents in
non-uniformly frustrated arrays consisting of cells with even and odd numbers
of pi-junctions. Such arrays are attractive model systems for studying the
exotic phases of the 2D XY-model and achieving scalable adiabatic quantum
computers.Comment: Pre-referee version. Accepted to Nature Physic
A spin triplet supercurrent through the half-metallic ferromagnet CrO2
In general, conventional superconductivity should not occur in a ferromagnet,
though it has been seen in iron under pressure. Moreover, theory predicts that
the current is always carried by pairs of electrons in a spin singlet state, so
conventional superconductivity decays very rapidly when in contact with a
ferromagnet, which normally prohibits the existence of singlet pairs. It has
been predicted that this rapid spatial decay would not occur when spin triplet
superconductivity could be induced in the ferromagnet. Here we report a
Josephson supercurrent through the strong ferromagnet CrO2, from which we infer
that it is a spin triplet supercurrent. Our experimental setup is different
from those envisaged in the earlier predictions, but we conclude that the
underlying physical explanation for our result is a conversion from spin
singlet to spin triplets at the interface. The supercurrent can be switched
with the direction of the magnetization, analogous to spin valve transistors,
and therefore could enable magnetization-controlled Josephson junctions.Comment: 14 pages, including 3 figure
Integer and half-integer flux-quantum transitions in a niobium/iron-pnictide loop
The recent discovery of iron-based superconductors challenges the existing
paradigm of high-temperature superconductivity. Owing to their unusual
multi-orbital band structure, magnetism, and electron correlation, theories
propose a unique sign reversed s-wave pairing state, with the order parameter
changing sign between the electron and hole Fermi pockets. However, because of
the complex Fermi surface topology and material related issues, the predicted
sign reversal remains unconfirmed. Here we report a novel phase-sensitive
technique for probing unconventional pairing symmetry in the polycrystalline
iron-pnictides. Through the observation of both integer and half-integer
flux-quantum transitions in composite niobium/iron-pnictide loops, we provide
the first phase-sensitive evidence of the sign change of the order parameter in
NdFeAsO0.88F0.12, lending strong support for microscopic models predicting
unconventional s-wave pairing symmetry. These findings have important
implications on the mechanism of pnictide superconductivity, and lay the
groundwork for future studies of new physics arising from the exotic order in
the FeAs-based superconductors.Comment: 23 pages, including 4 figures and supplementary informatio
Supercurrent reversal in quantum dots
When two superconductors become electrically connected by a weak link a
zero-resistance supercurrent can flow. This supercurrent is carried by Cooper
pairs of electrons with a combined charge of twice the elementary charge, e.
The 2e charge quantum is clearly visible in the height of Shapiro steps in
Josephson junctions under microwave irradiation and in the magnetic flux
periodicity of h/2e in superconducting quantum interference devices. Several
different materials have been used to weakly couple superconductors, such as
tunnel barriers, normal metals, or semiconductors. Here, we study supercurrents
through a quantum dot created in a semiconductor nanowire by local
electrostatic gating. Due to strong Coulomb interaction, electrons only tunnel
one-by-one through the discrete energy levels of the quantum dot. This
nevertheless can yield a supercurrent when subsequent tunnel events are
coherent. These quantum coherent tunnelling processes can result in either a
positive or a negative supercurrent, i.e. in a normal or a pi-junction,
respectively. We demonstrate that the supercurrent reverses sign by adding a
single electron spin to the quantum dot. When excited states of the quantum dot
are involved in transport, the supercurrent sign also depends on the character
of the orbital wavefunctions
Superconducting spintronics
The interaction between superconducting and spin-polarized orders has recently emerged as a major research field following a series
of fundamental breakthroughs in charge transport in superconductor-ferromagnet heterodevices which promise new device
functionality. Traditional studies which combine spintronics and superconductivity have mainly focused on the injection of
spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting and magnetic
orders turns out to be possible through the creation of spin-triplet Cooper pairs which are generated at carefully engineered
superconductor interfaces with ferromagnetic materials. Currently, there is intense activity focused on identifying materials
combinations which merge superconductivity and spintronics in order to enhance device functionality and performance. The results
look promising: it has been shown, for example, that superconducting order can greatly enhance central effects in spintronics such as
spin injection and magnetoresistance. Here, we review the experimental and theoretical advances in this field and provide an outlook
for upcoming challenges related to the new concept of superconducting spintronics.J.L. was supported by the Research Council of Norway, Grants No. 205591 and 216700.
J.W.A.R. was supported by the UK Royal Society and the Leverhulme Trust through an
International Network Grant (IN-2013-033).This is the accepted manuscript. The final version is available at http://www.nature.com/nphys/journal/v11/n4/full/nphys3242.html
Pt and CoB trilayer Josephson π junctions with perpendicular magnetic anisotropy
We report on the electrical transport properties of Nb based Josephson junctions with Pt/Co68B32/Pt ferromagnetic barriers. The barriers exhibit perpendicular magnetic anisotropy, which has the main advantage for potential applications over magnetisation in-plane systems of not affecting the Fraunhofer response of the junction. In addition, we report that there is no magnetic dead layer at the Pt/Co68B32 interfaces, allowing us to study barriers with ultra-thin Co68B32. In the junctions, we observe that the magnitude of the critical current oscillates with increasing thickness of the Co68B32 strong ferromagnetic alloy layer. The oscillations are attributed to the ground state phase difference across the junctions being modified from zero to π. The multiple oscillations in the thickness range 0.2 ⩽ dCoB ⩽ 1.4 nm suggests that we have access to the first zero-π and π-zero phase transitions. Our results fuel the development of low-temperature memory devices based on ferromagnetic Josephson junctions
Remotely induced magnetism in a normal metal using a superconducting spin-valve
Superconducting spintronics has emerged in the past decade as a promising new field that seeks to open a new dimension for nanoelectronics by utilizing the internal spin structure of the superconducting Cooper pair as a new degree of freedom1, 2. Its basic building blocks are spin-triplet Cooper pairs with equally aligned spins, which are promoted by proximity of a conventional superconductor to a ferromagnetic material with inhomogeneous macroscopic magnetization3. Using low-energy muon spin-rotation experiments we find an unanticipated effect, in contradiction with the existing theoretical models of superconductivity and ferromagnetism: the appearance of a magnetization in a thin layer of a non-magnetic metal (gold), separated from a ferromagnetic double layer by a 50-nm-thick superconducting layer of Nb. The effect can be controlled either by temperature or by using a magnetic field to control the state of the remote ferromagnetic elements, and may act as a basic building block for a new generation of quantum interference devices based on the spin of a Cooper pair
FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2
In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4
In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1
We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics
- …