239 research outputs found

    ACL graft re-rupture after double-bundle reconstruction: factors that influence the intra-articular pattern of injury

    Get PDF
    To determine the most common rupture patterns of previously reconstructed DB-ACL cases, seen at the time of revision surgery, and to determine the influence of age, gender, time between the initial ACL reconstruction and re-injury, tunnel angle and etiology of failure. Forty patients who presented for revision surgery after previous double-bundle ACL reconstruction were enrolled. Three orthopedic surgeons independently reviewed the arthroscopic videos and determined the rupture pattern of both the anteromedial and posterolateral grafts. The graft rupture pattern was then correlated with the previously mentioned factors. The most common injury pattern seen at the time of revision ACL surgery was mid-substance AM and PL bundle rupture. Factors that influenced the rupture pattern (proximal vs. mid-substance and distal rupture vs. elongated, but in continuity) were months between ACL reconstruction and re-injury (P = 0.002), the etiology of failure (traumatic vs. atraumatic) (P = 0.025) and the measured graft tunnel angle (P = 0.048). The most common pattern of graft re-rupture was mid-substance AM and mid-substance PL. As the length of time from the initial DB-ACL reconstruction to revision surgery increased, the pattern of injury more closely resembled that of the native ACL. Evaluation of patients who have undergone double-bundle ACL reconstruction, with a particular focus on graft maturity, mechanism of injury and femoral tunnel angles, and graft rupture pattern assists in preoperative planning for revision surger

    An Allosteric Mechanism for Switching between Parallel Tracks in Mammalian Sulfur Metabolism

    Get PDF
    Methionine (Met) is an essential amino acid that is needed for the synthesis of S-adenosylmethionine (AdoMet), the major biological methylating agent. Methionine used for AdoMet synthesis can be replenished via remethylation of homocysteine. Alternatively, homocysteine can be converted to cysteine via the transsulfuration pathway. Aberrations in methionine metabolism are associated with a number of complex diseases, including cancer, anemia, and neurodegenerative diseases. The concentration of methionine in blood and in organs is tightly regulated. Liver plays a key role in buffering blood methionine levels, and an interesting feature of its metabolism is that parallel tracks exist for the synthesis and utilization of AdoMet. To elucidate the molecular mechanism that controls metabolic fluxes in liver methionine metabolism, we have studied the dependencies of AdoMet concentration and methionine consumption rate on methionine concentration in native murine hepatocytes at physiologically relevant concentrations (40–400 µM). We find that both [AdoMet] and methionine consumption rates do not change gradually with an increase in [Met] but rise sharply (∼10-fold) in the narrow Met interval from 50 to 100 µM. Analysis of our experimental data using a mathematical model reveals that the sharp increase in [AdoMet] and the methionine consumption rate observed within the trigger zone are associated with metabolic switching from methionine conservation to disposal, regulated allosterically by switching between parallel pathways. This regulatory switch is triggered by [Met] and provides a mechanism for stabilization of methionine levels in blood over wide variations in dietary methionine intake

    Data mining of high density genomic variant data for prediction of Alzheimer's disease risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discovery of genetic associations is an important factor in the understanding of human illness to derive disease pathways. Identifying multiple interacting genetic mutations associated with disease remains challenging in studying the etiology of complex diseases. And although recently new single nucleotide polymorphisms (SNPs) at genes implicated in immune response, cholesterol/lipid metabolism, and cell membrane processes have been confirmed by genome-wide association studies (GWAS) to be associated with late-onset Alzheimer's disease (LOAD), a percentage of AD heritability continues to be unexplained. We try to find other genetic variants that may influence LOAD risk utilizing data mining methods.</p> <p>Methods</p> <p>Two different approaches were devised to select SNPs associated with LOAD in a publicly available GWAS data set consisting of three cohorts. In both approaches, single-locus analysis (logistic regression) was conducted to filter the data with a less conservative p-value than the Bonferroni threshold; this resulted in a subset of SNPs used next in multi-locus analysis (random forest (RF)). In the second approach, we took into account prior biological knowledge, and performed sample stratification and linkage disequilibrium (LD) in addition to logistic regression analysis to preselect loci to input into the RF classifier construction step.</p> <p>Results</p> <p>The first approach gave 199 SNPs mostly associated with genes in calcium signaling, cell adhesion, endocytosis, immune response, and synaptic function. These SNPs together with <it>APOE and GAB2 </it>SNPs formed a predictive subset for LOAD status with an average error of 9.8% using 10-fold cross validation (CV) in RF modeling. Nineteen variants in LD with <it>ST5, TRPC1, ATG10, ANO3, NDUFA12, and NISCH </it>respectively, genes linked directly or indirectly with neurobiology, were identified with the second approach. These variants were part of a model that included <it>APOE </it>and <it>GAB2 </it>SNPs to predict LOAD risk which produced a 10-fold CV average error of 17.5% in the classification modeling.</p> <p>Conclusions</p> <p>With the two proposed approaches, we identified a large subset of SNPs in genes mostly clustered around specific pathways/functions and a smaller set of SNPs, within or in proximity to five genes not previously reported, that may be relevant for the prediction/understanding of AD.</p

    Characterization of NF-κB reporter U937 cells and their application for the detection of inflammatory immune-complexes

    Get PDF
    Our study tested the hypothesis that immunoglobulins differ in their ability to activate the nuclear factor-κB pathway mediated cellular responses. These responses are modulated by several properties of the immune complex, including the ratio of antibody isotypes binding to antigen. Immunoassays allow the measurement of antigen specific antibodies belonging to distinct immunoglobulin classes and subclasses but not the net biological effect of the combination of these antibodies. We set out to develop a biosensor that is suitable for the detection and characterization of antigen specific serum antibodies. We genetically modified the monocytoid U937 cell line carrying Fc receptors with a plasmid encoding NF-κB promoter-driven GFP. This clone, U937-NF-κB, was characterized with respect to FcR expression and response to solid-phase immunoglobulins. Human IgG3, IgG4 and IgG1 induced GFP production in a time- and dose-dependent manner, in this order of efficacy, while IgG2 triggered no activation at the concentrations tested. IgA elicited no response alone but showed significant synergism with IgG3 and IgG4. We confirmed the importance of activation via FcγRI by direct stimulation with monoclonal antibody and by competition assays. We used citrullinated peptides and serum from rheumatoid arthritis patients to generate immune complexes and to study the activation of U937-NF-κB, observing again a synergistic effect between IgG and IgA. Our results show that immunoglobulins have distinct pro-inflammatory potential, and that U937-NF-κB is suitable for the estimation of biological effects of immune-complexes, offering insight into monocyte activation and pathogenesis of antibody mediated diseases

    Regulation of Bestrophins by Ca2+: A Theoretical and Experimental Study

    Get PDF
    Bestrophins are a recently discovered family of Cl− channels, for which no structural information is available. Some family members are activated by increased intracellular Ca2+ concentration. Bestrophins feature a well conserved Asp-rich tract in their COOH terminus (Asp-rich domain), which is homologous to Ca2+-binding motifs in human thrombospondins and in human big-conductance Ca2+- and voltage-gated K+ channels (BKCa). Consequently, the Asp-rich domain is also a candidate for Ca2+ binding in bestrophins. Based on these considerations, we constructed homology models of human bestrophin-1 (Best1) Asp-rich domain using human thrombospondin-1 X-ray structure as a template. Molecular dynamics simulations were used to identify Asp and Glu residues binding Ca2+ and to predict the effects of their mutations to alanine. We then proceeded to test selected mutations in the Asp-rich domain of the highly homologous mouse bestrophin-2. The mutants expressed in HEK-293 cells were investigated by electrophysiological experiments using the whole-cell voltage-clamp technique. Based on our molecular modeling results, we predicted that Asp-rich domain has two defined binding sites and that D301A and D304A mutations may impact the binding of the metal ions. The experiments confirmed that these mutations do actually affect the function of the protein causing a large decrease in the Ca2+-activated Cl− current, fully consistent with our predictions. In addition, other studied mutations (E306A, D312A) did not decrease Ca2+-activated Cl− current in agreement with modeling results

    Regulation of Bestrophins by Ca2+: A Theoretical and Experimental Study

    Get PDF
    Bestrophins are a recently discovered family of Cl− channels, for which no structural information is available. Some family members are activated by increased intracellular Ca2+ concentration. Bestrophins feature a well conserved Asp-rich tract in their COOH terminus (Asp-rich domain), which is homologous to Ca2+-binding motifs in human thrombospondins and in human big-conductance Ca2+- and voltage-gated K+ channels (BKCa). Consequently, the Asp-rich domain is also a candidate for Ca2+ binding in bestrophins. Based on these considerations, we constructed homology models of human bestrophin-1 (Best1) Asp-rich domain using human thrombospondin-1 X-ray structure as a template. Molecular dynamics simulations were used to identify Asp and Glu residues binding Ca2+ and to predict the effects of their mutations to alanine. We then proceeded to test selected mutations in the Asp-rich domain of the highly homologous mouse bestrophin-2. The mutants expressed in HEK-293 cells were investigated by electrophysiological experiments using the whole-cell voltage-clamp technique. Based on our molecular modeling results, we predicted that Asp-rich domain has two defined binding sites and that D301A and D304A mutations may impact the binding of the metal ions. The experiments confirmed that these mutations do actually affect the function of the protein causing a large decrease in the Ca2+-activated Cl− current, fully consistent with our predictions. In addition, other studied mutations (E306A, D312A) did not decrease Ca2+-activated Cl− current in agreement with modeling results

    TNFAIP3 Maintains Intestinal Barrier Function and Supports Epithelial Cell Tight Junctions

    Get PDF
    Tight junctions between intestinal epithelial cells mediate the permeability of the intestinal barrier, and loss of intestinal barrier function mediated by TNF signaling is associated with the inflammatory pathophysiology observed in Crohn's disease and celiac disease. Thus, factors that modulate intestinal epithelial cell response to TNF may be critical for the maintenance of barrier function. TNF alpha-induced protein 3 (TNFAIP3) is a cytosolic protein that acts in a negative feedback loop to regulate cell signaling induced by Toll-like receptor ligands and TNF, suggesting that TNFAIP3 may play a role in regulating the intestinal barrier. To investigate the specific role of TNFAIP3 in intestinal barrier function we assessed barrier permeability in TNFAIP3−/− mice and LPS-treated villin-TNFAIP3 transgenic mice. TNFAIP3−/− mice had greater intestinal permeability compared to wild-type littermates, while villin-TNFAIP3 transgenic mice were protected from increases in permeability seen within LPS-treated wild-type littermates, indicating that barrier permeability is controlled by TNFAIP3. In cultured human intestinal epithelial cell lines, TNFAIP3 expression regulated both TNF-induced and myosin light chain kinase-regulated tight junction dynamics but did not affect myosin light chain kinase activity. Immunohistochemistry of mouse intestine revealed that TNFAIP3 expression inhibits LPS-induced loss of the tight junction protein occludin from the apical border of the intestinal epithelium. We also found that TNFAIP3 deubiquitinates polyubiquitinated occludin. These in vivo and in vitro studies support the role of TNFAIP3 in promoting intestinal epithelial barrier integrity and demonstrate its novel ability to maintain intestinal homeostasis through tight junction protein regulation

    Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source

    Get PDF
    The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, 13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment.We thank Douwe Bartstra (Vereniging tot Behoud van de Gasbronnen in Noord-Holland, The Netherlands), Carla Frijters (Paques BV, The Netherlands) and Teun Veuskens (Laboratory of Microbiology, WUR, The Netherlands) for sampling; Martin Meirink (Hoogheemraadschap Hollands Noorderkwartier, The Netherlands) for physicochemical data; Freek van Sambeek for providing Figure 1; Lennart Kleinjans (Laboratory of Microbiology, WUR, The Netherlands) for help with pyrosequencing analysis, Irene Sánchez-Andrea (Laboratory of Microbiology, WUR, The Netherlands) for proof-reading and Katharina Ettwig (Department of Microbiology, Radboud University Nijmegen, The Netherlands) for providing M. oxyfera DNA. We want to thank all anonymous reviewers for valuable contributions. This research is supported by the Dutch Technology Foundation STW (project 10711), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Research of AJMS is supported by ERC grant (project 323009) and the Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO)
    corecore