475 research outputs found

    Liouville-space R-matrix-Floquet description of atomic radiative processes involving autoionizing states in the presence of intense electromagnetic fields

    Get PDF
    A reduced-density-operator description is developed for coherent optical phenomena in many-electron atomic systems, utilizing a Liouville-space, multiple-mode Floquet–Fourier representation. The Liouville-space formulation provides a natural generalization of the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method, which has been developed for multi-photon transitions and laser-assisted electron–atom collision processes. In these applications, the R-matrix-Floquet method has been demonstrated to be capable of providing an accurate representation of the complex, multi-level structure of many-electron atomic systems in bound, continuum, and autoionizing states. The ordinary Hilbert-space (Hamiltonian) formulation of the R-matrix-Floquet method has been implemented in highly developed computer programs, which can provide a non-perturbative treatment of the interaction of a classical, multiple-mode electromagnetic field with a quantum system. This quantum system may correspond to a many-electron, bound atomic system and a single continuum electron. However, including pseudo-states in the expansion of the many-electron atomic wave function can provide a representation of multiple continuum electrons. The 'dressed' many-electron atomic states thereby obtained can be used in a realistic non-perturbative evaluation of the transition probabilities for an extensive class of atomic collision and radiation processes in the presence of intense electromagnetic fields. In order to incorporate environmental relaxation and decoherence phenomena, we propose to utilize the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method as a starting-point for a Liouville-space (reduced-density-operator) formulation. To illustrate how the Liouville-space R-matrix-Floquet formulation can be implemented for coherent atomic radiative processes, we discuss applications to electromagnetically induced transparency, as well as to related pump–probe optical phenomena, and also to the unified description of radiative and dielectronic recombination in electron–ion beam interactions and high-temperature plasmas

    The effect of Neuragen PN® on Neuropathic pain: A randomized, double blind, placebo controlled clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A double blind, randomized, placebo controlled study to evaluate the safety and efficacy of the naturally derived topical oil, "Neuragen PN<sup>®</sup>" for the treatment of neuropathic pain.</p> <p>Methods</p> <p>Sixty participants with plantar cutaneous (foot sole) pain due to all cause peripheral neuropathy were recruited from the community. Each subject was randomly assigned to receive one of two treatments (Neuragen PN<sup>® </sup>or placebo) per week in a crossover design. The primary outcome measure was acute spontaneous pain level as reported on a visual analog scale.</p> <p>Results</p> <p>There was an overall pain reduction for both treatments from pre to post application. As compared to the placebo, Neuragen PN<sup>® </sup>led to significantly (p < .05) greater pain reduction. Fifty six of sixty subjects (93.3%) receiving Neuragen PN<sup>® </sup>reported pain reduction within 30 minutes. This reduction within 30 minutes occurred in only twenty one of sixty (35.0%) subjects receiving the placebo. In a break out analysis of the diabetic only subgroup, 94% of subjects in the Neuragen PN<sup>® </sup>group achieved pain reduction within 30 minutes vs 11.0% of the placebo group. No adverse events were observed.</p> <p>Conclusions</p> <p>This randomized, placebo controlled, clinical trial with crossover design revealed that the naturally derived oil, Neuragen PN<sup>®</sup>, provided significant relief from neuropathic pain in an all cause neuropathy group. Participants with diabetes within this group experienced similar pain relief.</p> <p>Trial registration</p> <p><b>ISRCTN registered: </b>ISRCTN13226601</p

    Building nonparametric nn-body force fields using Gaussian process regression

    Full text link
    Constructing a classical potential suited to simulate a given atomic system is a remarkably difficult task. This chapter presents a framework under which this problem can be tackled, based on the Bayesian construction of nonparametric force fields of a given order using Gaussian process (GP) priors. The formalism of GP regression is first reviewed, particularly in relation to its application in learning local atomic energies and forces. For accurate regression it is fundamental to incorporate prior knowledge into the GP kernel function. To this end, this chapter details how properties of smoothness, invariance and interaction order of a force field can be encoded into corresponding kernel properties. A range of kernels is then proposed, possessing all the required properties and an adjustable parameter nn governing the interaction order modelled. The order nn best suited to describe a given system can be found automatically within the Bayesian framework by maximisation of the marginal likelihood. The procedure is first tested on a toy model of known interaction and later applied to two real materials described at the DFT level of accuracy. The models automatically selected for the two materials were found to be in agreement with physical intuition. More in general, it was found that lower order (simpler) models should be chosen when the data are not sufficient to resolve more complex interactions. Low nn GPs can be further sped up by orders of magnitude by constructing the corresponding tabulated force field, here named "MFF".Comment: 31 pages, 11 figures, book chapte

    Effect of parasympathetic stimulation on brain activity during appraisal of fearful expressions

    Get PDF
    Autonomic nervous system activity is an important component of human emotion. Mental processes influence bodily physiology, which in turn feeds back to influence thoughts and feelings. Afferent cardiovascular signals from arterial baroreceptors in the carotid sinuses are processed within the brain and contribute to this two-way communication with the body. These carotid baroreceptors can be stimulated non-invasively by externally applying focal negative pressure bilaterally to the neck. In an experiment combining functional neuroimaging (fMRI) with carotid stimulation in healthy participants, we tested the hypothesis that manipulating afferent cardiovascular signals alters the central processing of emotional information (fearful and neutral facial expressions). Carotid stimulation, compared with sham stimulation, broadly attenuated activity across cortical and brainstem regions. Modulation of emotional processing was apparent as a significant expression-by-stimulation interaction within left amygdala, where responses during appraisal of fearful faces were selectively reduced by carotid stimulation. Moreover, activity reductions within insula, amygdala, and hippocampus correlated with the degree of stimulation-evoked change in the explicit emotional ratings of fearful faces. Across participants, individual differences in autonomic state (heart rate variability, a proxy measure of autonomic balance toward parasympathetic activity) predicted the extent to which carotid stimulation influenced neural (amygdala) responses during appraisal and subjective rating of fearful faces. Together our results provide mechanistic insight into the visceral component of emotion by identifying the neural substrates mediating cardiovascular influences on the processing of fear signals, potentially implicating central baroreflex mechanisms for anxiolytic treatment targets

    Propentofylline Targets TROY, a Novel Microglial Signaling Pathway

    Get PDF
    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain cancer, with a median survival of less than 2 years after diagnosis with current available therapies. The tumor microenvironment serves a critical role in tumor invasion and progression, with microglia as a critical player. Our laboratory has previously demonstrated that propentofylline, an atypical methylxanthine with central nervous system glial modulating and anti-inflammatory actions, significantly decreases tumor growth in a GBM rodent model by preferentially targeting microglia. In the present study, we used the CNS-1 rat glioma model to elucidate the mechanisms of propentofylline. Here we demonstrate that propentofylline targets TROY, a novel signaling molecule up-regulated in infiltrating microglia, and not macrophages, in response to CNS-1 cells. We identify Pyk2, Rac1 and pJNK as the downstream signaling molecules of TROY through western blot analysis and siRNA transfection. We demonstrate that inhibition of TROY expression in microglia by siRNA transfection significantly inhibits microglial migration towards CNS-1 cells similar to 10 µM propentofylline treatment. These results identify TROY as a novel molecule expressed in microglia, involved in their migration and targeted by propentofylline. Furthermore, these results describe a signaling molecule that is differentially expressed between microglia and macrophages in the tumor microenvironment

    ZEB1 Links p63 and p73 in a Novel Neuronal Survival Pathway Rapidly Induced in Response to Cortical Ischemia

    Get PDF
    Background: Acute hypoxic/ischemic insults to the forebrain, often resulting in significant cellular loss of the cortical parenchyma, are a major cause of debilitating injury in the industrialized world. A clearer understanding of the pro-death/ pro-survival signaling pathways and their downstream targets is critical to the development of therapeutic interventions to mitigate permanent neurological damage. Methodology/Principal Findings: We demonstrate here that the transcriptional repressor ZEB1, thought to be involved in regulating the timing and spatial boundaries of basic-Helix-Loop-Helix transactivator-mediated neurogenic determination/ differentiation programs, functions to link a pro-survival transcriptional cascade rapidly induced in cortical neurons in response to experimentally induced ischemia. Employing histological, tissue culture, and molecular biological read-outs, we show that this novel pro-survival response, initiated through the rapid induction of p63, is mediated ultimately by the transcriptional repression of a pro-apoptotic isoform of p73 by ZEB1. We show further that this phylogenetically conserved pathway is induced as well in the human cortex subjected to episodes of clinically relevant stroke. Conclusions/Significance: The data presented here provide the first evidence that ZEB1 induction is part of a protective response by neurons to ischemia. The stroke-induced increase in ZEB1 mRNA and protein levels in cortical neurons is both developmentally and phylogenetically conserved and may therefore be part of a fundamental cellular response to thi

    The influence of cardiovascular morbidity on the prognosis in prostate cancer. Experience from a 12-year nationwide Danish population-based cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine the impact of preexisting ischemic heart disease (IHD) and stroke on overall survival in prostate cancer patients.</p> <p>Methods</p> <p>We conducted a cohort study of patients with incident prostate cancer registered in the Danish Cancer Registry from 1997 through 2008. We identified patients diagnosed with IHD or stroke prior to the date of prostate cancer diagnosis in the Danish National Patient Registry. We constructed Kaplan-Meier curves to analyze time to death and Cox regression was used to estimate hazard ratios (HRs) to compare mortality rates by preexisting IHD or stroke status, adjusting for age, stage, comorbidity, and calendar period.</p> <p>Results</p> <p>Of 30,721 prostate cancer patients, 4,276 (14%) had preexisting IHD and 1,331 (4%) preexisting stroke. Crude 1- and 5-year survival rates were 85% and 44% in men without preexisting IHD or stroke, 81% and 36% in men with preexisting IHD, and 78% and 27% in men with preexisting stroke. Adjusted HRs were 1.05 (95% CI 1.00-1.10) for patients with IHD and 1.20 (95% CI 1.12-1.30) for patients with stroke compared with patients without preexisting IHD or stroke.</p> <p>Conclusions</p> <p>Preexisting IHD had minimal impact on mortality in prostate cancer patients, whereas overall mortality was 20% higher in prostate cancer patients with preexisting stroke compared to those without IHD or stroke. These results highlight the importance of differentiating between various comorbidities.</p
    corecore