648 research outputs found

    Identification of cubebin and epicubebin isolated from Piper cubeba L.f fruits with two D-NMR spectroscopy

    Get PDF
    One of the isolated active compound of the tracheospasmolytic from kemukus fruits (Piper cubeba L.f) is cubebin. The problem occurred when cubebin (C20H20O6) mixed with its epimer because of the difficultly to identify the structure by 1D-NMR spectroscopy. Structure identification then was conducted by 2D-NMR spectroscopy, so the structure of cubebin and epicubebin can be clear identified. Key words : Cubebin, epicubebin, identification, 2D-NM

    Leveraging 3D printing to enhance mass spectrometry:A review

    Get PDF
    The use of 3D printing in the chemical and analytical sciences has gained a lot of momentum in recent years. Some of the earliest publications detailed 3D-printed interfaces for mass spectrometry, which is an evolving family of powerful detection techniques. Since then, the application of 3D printing for enhancing mass spectrometry has significantly diversified, with important reasons for its application including flexible integration of different parts or devices, fast customization of setups, additional functionality, portability, cost-effectiveness, and user-friendliness. Moreover, computer-aided design (CAD) and 3D printing enables the rapid and wide distribution of scientific and engineering knowledge. 3D printers allow fast prototyping with constantly increasing resolution in a broad range of materials using different fabrication principles. Moreover, 3D printing has proven its value in the development of novel technologies for multiple analytical applications such as online and offline sample preparation, ionization, ion transport, and developing interfaces for the mass spectrometer. Additionally, 3D-printed devices are often used for the protection of more fragile elements of a sample preparation system in a customized fashion, and allow the embedding of external components into an integrated system for mass spectrometric analysis. This review comprehensively addresses these developments, since their introduction in 2013. Moreover, the challenges and choices with respect to the selection of the most appropriate printing process in combination with an appropriate material for a mass spectrometric application are addressed; special attention is paid to chemical compatibility, ease of production, and cost. In this review, we critically discuss these developments and assess their impact on mass spectrometry

    Alkaloid production by a Cinchona officinalis "Ledgeriana" hairy root culture containing constitutive expression constructs of tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus

    Get PDF
    Cinchona officinalis ‘Ledgeriana’, former called Cinchona ledgeriana, hairy roots were initiated containing constitutive-expression constructs of cDNAs encoding the enzymes tryptophan decarboxylase (TDC) and strictosidine synthase (STR) from Catharanthus roseus, two key enzymes in terpenoid indole and quinoline alkaloid biosynthesis. The successful integration of these genes and the reporter gene gus-int was demonstrated using Southern blotting and the polymerase chain reaction. The products of TDC and STR, tryptamine and strictosidine, were found in high amounts, 1200 and 1950 mg g–1 dry weight, respectively. Quinine and quinidine levels were found to rise up to 500 and 1000 mg g–1 dry weight, respectively. The results show that genetic engineering with multiple genes is well possible in hairy roots of C. officinalis. However, 1 year after analyzing the hairy roots for the first time, they had completely lost their capacity to accumulate alkaloids.info:eu-repo/semantics/publishedVersio

    Alkaloid production by a Cinchona officinalis "Ledgeriana" hairy root culture containing constitutive expression constructs of tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus

    Get PDF
    Cinchona officinalis ‘Ledgeriana’, former called Cinchona ledgeriana, hairy roots were initiated containing constitutive-expression constructs of cDNAs encoding the enzymes tryptophan decarboxylase (TDC) and strictosidine synthase (STR) from Catharanthus roseus, two key enzymes in terpenoid indole and quinoline alkaloid biosynthesis. The successful integration of these genes and the reporter gene gus-int was demonstrated using Southern blotting and the polymerase chain reaction. The products of TDC and STR, tryptamine and strictosidine, were found in high amounts, 1200 and 1950 mg g–1 dry weight, respectively. Quinine and quinidine levels were found to rise up to 500 and 1000 mg g–1 dry weight, respectively. The results show that genetic engineering with multiple genes is well possible in hairy roots of C. officinalis. However, 1 year after analyzing the hairy roots for the first time, they had completely lost their capacity to accumulate alkaloids.info:eu-repo/semantics/publishedVersio

    Suspension cultured transgenic cells of Nicotiana tabacum expressing tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus produce strictosidine upon secologanin feeding

    Get PDF
    A transgenic cell suspension culture of Nicotiana tabacum L. ‘Petit Havana’ SR1 was established expressing tryptophan decarboxylase and strictosidine synthase cDNA clones from Catharanthus roseus (L.) G. Don under the direction of cauliflower mosaic virus 35S promoter and nopaline synthase terminator sequences. During a growth cycle, the transgenic tobacco cells showed relatively constant tryptophan decarboxylase activity and an about two- to sixfold higher strictosidine synthase activity, enzyme activities not detectable in untransformed tobacco cells. The transgenic culture accumulated tryptamine and produced strictosidine upon feeding of secologanin, demonstrating the in vivo functionality of the two transgene-encoded enzymes. The accumulation of strictosidine, which occurred predominantly in the medium, could be enhanced by feeding both secologanin and tryptamine. No strictosidine synthase activity was detected in the medium, indicating the involvement of secologanin uptake and strictosidine release by the cells.info:eu-repo/semantics/publishedVersio

    Synergy: easier to say than to prove

    Get PDF
    Plant science

    Suspension cultured transgenic cells of Nicotiana tabacum expressing tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus produce strictosidine upon secologanin feeding

    Get PDF
    A transgenic cell suspension culture of Nicotiana tabacum L. ‘Petit Havana’ SR1 was established expressing tryptophan decarboxylase and strictosidine synthase cDNA clones from Catharanthus roseus (L.) G. Don under the direction of cauliflower mosaic virus 35S promoter and nopaline synthase terminator sequences. During a growth cycle, the transgenic tobacco cells showed relatively constant tryptophan decarboxylase activity and an about two- to sixfold higher strictosidine synthase activity, enzyme activities not detectable in untransformed tobacco cells. The transgenic culture accumulated tryptamine and produced strictosidine upon feeding of secologanin, demonstrating the in vivo functionality of the two transgene-encoded enzymes. The accumulation of strictosidine, which occurred predominantly in the medium, could be enhanced by feeding both secologanin and tryptamine. No strictosidine synthase activity was detected in the medium, indicating the involvement of secologanin uptake and strictosidine release by the cells.info:eu-repo/semantics/publishedVersio
    • …
    corecore