68 research outputs found

    Surface Water and Groundwater Quality in South Africa and Mozambique—Analysis of the Most Critical Pollutants for Drinking Purposes and Challenges in Water Treatment Selection

    Get PDF
    According to a recent report by the World Health Organization (WHO), the countries which still have limited access to water for drinking purposes are mainly those in the Sub‐Saharan region. In this context, the current study provides an overview of the quality of surface water and groundwater in rural and peri‐urban areas of the Republic of South Africa (RSA) and Mozambique (MZ) in terms of concentrations of conventional pollutants, inorganic chemicals, microorganisms, and micropollutants. Their values were compared with the drinking water standards available for the two countries. Regarding surface water, it was found that microorganisms occur at high concentrations; nickel (RSA) and boron (MZ) are other critical parameters. Regarding groundwater, arsenic and lead (RSA) and boron, sodium, and chloride (MZ) are the main critical substances. With regard to micropollutants, their surface water concentrations are much higher than those in European rivers. The highest values were for ibuprofen, acetylsalicylic acid, clozapine, and estriol. Suitable treatment is necessary to produce safe water depending on the main critical pollutants but, at the same time, action should be taken to improve wastewater treatment in rural areas to improve and safeguard surface water bodies and groundwater which are sources for drinking need

    Water treatment plants and pharmaceutical residues in Catalonia and Italy

    Get PDF
    This study analyses the occurrence of commonly administered pharmaceuticals in urban and treated wastewater and surface waters in Catalonia and Italy, reviewing recently published investigations. The reported removal efficiencies in common municipal wastewater treatment plants are also discussed and pharmaceutical load discharged after these treatments are analysed. Finally, environmental risk posed by the presence of some of these compounds in surface water is discussed, and a case study highlighting the issue of pharmaceutical residues in the environment is presented. [Contrib Sci 10:135-150 (2014)

    Quantitative and qualitative approaches for CEC prioritization when reusing reclaimed water for irrigation needs – A critical review

    Get PDF
    The use of reclaimed water for irrigation is an option that is becoming increasingly widespread to alleviate water scarcity and to cope with drought. However, reclaimed water, if used for irrigation, may introduce Contaminants of Emerging Concern (CECs) into the agroecosystems, which may be taken up by the crops and subsequently enter the food chain. The number of CECs is steadily increasing due to their continuous introduction on the market for different uses. There is an urgent need to draw up a short list of potential high priority CECs, which are substances that could be taken up by plants and accumulated in food produce, and/or that could have negative effects on human health and the environment. This review presents and discusses the approaches developed to prioritize CECs when reclaimed water is (re-)used for irrigation. They are divided into quantitative methodologies, which estimate the risk for environmental compartments (soil and water), predators and humans through equations, and qualitative methodologies, which are instead conceptual frameworks or procedures based on the simultaneous combination of data/information/practices with the judgment of experts. Three antibiotics (erythromycin, sulfamethoxazole and ciprofloxacin), one estrogen (17-α ethinylestradiol) and one analgesic (ibuprofen) were found on at least two priority lists, although comparison among studies is still difficult. The review remarks that it is advisable to harmonize the different methodologies in order to identify the priority CECs to include in monitoring programs in reclaimed water reuse projects and to ensure a high level of protection for humans and the environment

    Study of the Influence of the Wastewater Matrix in the Adsorption of Three Pharmaceuticals by Powdered Activated Carbon

    Get PDF
    The use of powdered activated carbon (PAC) as an absorbent has become a promising option to upgrade wastewater treatment plants (WWTPs) that were not designed to remove pharmaceuticals. However, PAC adsorption mechanisms are not yet fully understood, especially with regard to the nature of the wastewater. In this study, we tested the adsorption of three pharmaceuticals, namely diclofenac, sulfamethoxazole and trimethoprim, onto PAC under four different water matrices: ultra-pure water, humic acid solution, effluent and mixed liquor from a real WWTP. The adsorption affinity was defined primarily by the pharmaceutical physicochemical properties (charge and hydrophobicity), with better results obtained for trimethoprim, followed by diclofenac and sulfamethoxazole. In ultra-pure water, the results show that all pharmaceuticals followed pseudo-second order kinetics, and they were limited by a boundary layer effect on the surface of the adsorbent. Depending on the water matrix and compound, the PAC capacity and the adsorption process varied accordingly. The higher adsorption capacity was observed for diclofenac and sulfamethoxazole in humic acid solution (Langmuir isotherm, R2 > 0.98), whereas better results were obtained for trimethoprim in the WWTP effluent. Adsorption in mixed liquor (Freundlich isotherm, R2 > 0.94) was limited, presumably due to its complex nature and the presence of suspended solids

    Activated carbon coupled with advanced biological wastewater treatment: A review of the enhancement in micropollutant removal

    Get PDF
    This study consists of a review on the removal efficiencies of a wide spectrum of micropollutants (MPs) in biological treatment (mainly membrane bioreactor) coupled with activated carbon (AC) (AC added in the bioreactor or followed by an AC unit, acting as a post treatment). It focuses on how the presence of AC may promote the removal of MPs and the effects of dissolved organic matter (DOM) in wastewater. Removal data collected of MPs are analysed versus AC dose if powdered AC is added in the bioreactor, and as a function of the empty bed contact time in the case of a granular activated carbon (GAC) column acting as a post treatment. Moreover, the enhancement in macropollutant (organic matter, nitrogen and phosphorus compounds) removal is analysed as well as the AC mitigation effect towards membrane fouling and, finally, how sludge properties may change in the presence of AC. To sum up, it was found that AC improves the removal of most MPs, favouring their sorption on the AC surface, promoted by the presence of different functional groups and then enhancing their degradation processes. DOM is a strong competitor in sorption on the AC surface, but it may promote the transformation of GAC in a biologically activated carbon thus enhancing all the degradation processes. Finally, AC in the bioreactor increases sludge floc strength and improves its settling characteristics and sorption potential

    Electrochemical disinfection of groundwater for civil use – An example of an effective endogenous advanced oxidation process

    Get PDF
    Lab-scale experiments using real groundwater were carried out using the CabECO¼ reactor system in order to evaluate its suitability for producing safe water, acceptable for civil purposes. Trials were carried out in discontinuous and in continuous mode, analyzing the influence of electrical and hydraulic process parameters on the quality of treated water. The use of highly boron-doped diamond electrodes in the reactor allowed the electrosynthesis of considerable amounts of ozone. Because of the relatively high amount of chloride in the groundwater samples, a mixture of HOCl/ClO- was also synthesized. Somewhat unexpectedly, the increase in the current density in the explored range 100 -1000 A m-2 was accompanied by an increase in the faradaic yield of the electrosynthesis of oxidants, which was more pronounced for ozone than for free chlorine. As reported in literature, the main radical intermediate in the relevant reactions is ●OH, which can lead to different oxidation products, namely ozone and HOCl/ClO-. The electrolytic treatment also caused a decrease in the concentration of minor components, including NH4+ and Br-. Other byproducts were ClO3- and ClO4-, although their concentration levels were low. Moreover, due to alkali formation at the cathode surface, the precipitation of calcium and magnesium carbonates was also observed. In addition, the experimental investigation showed that even Pseudomonas aeruginosa and Legionella could be completely removed in the treated stream, due to the unique capacity of the reactor to synthesize biocidal agents like ozone, HOCl/ClO-, and chloramines. These effects were particularly evident during batch experiments.Lab-scale experiments using real groundwater were carried out using the CabECO¼ reactor system in order to evaluate its suitability for producing safe water, acceptable for civil purposes. Trials were carried out in discontinuous and in continuous mode, analyzing the influence of electrical and hydraulic process parameters on the quality of treated water. The use of highly boron-doped diamond electrodes in the reactor allowed the electrosynthesis of considerable amounts of ozone. Because of the relatively high amount of chloride in the groundwater samples, a mixture of HOCl/ClO− was also synthesized. Somewhat unexpectedly, the increase in the current density in the explored range 100–1000 A m−2 was accompanied by an increase in the faradaic yield of the electrosynthesis of oxidants, which was more pronounced for ozone than for free chlorine. As reported in literature, the main radical intermediate in the relevant reactions is [rad]OH, which can lead to different oxidation products, namely ozone and HOCl/ClO−. The electrolytic treatment also caused a decrease in the concentration of minor components, including NH4+ and Br−. Other byproducts were ClO3− and ClO4−, although their concentration levels were low. Moreover, due to alkali formation at the cathode surface, the precipitation of calcium and magnesium carbonates was also observed. In addition, the experimental investigation showed that even Pseudomonas aeruginosa and Legionella could be completely removed in the treated stream, due to the unique capacity of the reactor to synthesize biocidal agents like ozone, HOCl/ClO−, and chloramines. These effects were particularly evident during batch experiments

    Improvement in the removal of micropollutants at Porto Marghera industrial wastewaters treatment plant by MBR technology.

    Get PDF
    This paper deals with the case of one of the most important industrial application of membrane technology in the world: the upgrading of the main industrial wastewater treatment plant (WWTP) of the petrochemical site of Porto Marghera, Northern Italy, completed on December 2005 and tested on September 2006. It describes the principal interventions of the plant upgrading and it discusses the removal obtained during the test periods for conventional pollutants as well as for micropollutants. The plant upgrading consisted of a series of improvements of the existing industrial WWTP, in order to increase the removal efficiency of the total suspended solids and the associate removal of ten micropollutant compounds, the so called forbidden substances. The most important intervention was the conversion of the existing activated sludge section into a membrane biological reactor, in order to guarantee adherence to the severe limits imposed by the special law issued to protect the Venice Lagoon, with particular reference to the mentioned 10 forbidden compounds. The experimental results and the numerous test-runs conducted confirmed the respect of the legal limits for the pollutants in the final effluent as well of the required removal rates for the different parameters. Therefore, the upgraded treatment plant was declared agreeing with the approved design

    A thorough analysis of the occurrence, removal and environmental risks of organic micropollutants in a full-scale hybrid membrane bioreactor fed by hospital wastewater

    Get PDF
    The recent draft of the Urban Wastewater Treatment Directive pays attention to contaminants of emerging concern including organic micropollutants (OMPs) and requires the removal of some of them at large urban wastewater treatment plants (WWTPs) calling for their upgrading. Many investigations to date have reported the occurrence of a vast group of OMPs in the raw influent and many technologies have been tested for their removal at a lab- or pilot-scale. Moreover, hospital wastewater (HWW) may contain specific OMPs at a high concentration and therefore its treatment deserves attention. In this study, a 1-year investigation was carried out at a full-scale membrane bioreactor (MBR) treating mainly HWW. To promote the removal of OMPs, powdered activated carbon (PAC) was added to the bioreactor at 0.1 g/L and 0.2 g/L which resulted in the MBR operating as a hybrid MBR. Its performance was tested for 232 target and 90 non-target OMPs, analysed by UHPLC-QTOF-MS using a direct injection method. The wastewater arriving at the WWTP was characterized and the performance of both the MBR and hybrid MBR was assessed for: key OMPs selected on the basis of their frequency, occurrence, persistence to removal, bioaccumulation and toxicity; OMP classes; and the whole list of OMPs. Finally, an environmental risk assessment of the OMP residues was conducted by means of the risk quotient approach. The results indicate that PAC addition increased the removal of most of the key OMPs (e.g., sulfamethoxazole, diclofenac, lidocaine) and OMP classes (e.g., antibiotics, psychiatric drugs and stimulants) with the highest loads in the WWTP influent. The hybrid MBR also reduced the risk in the receiving water as the PAC dosage increased mainly for spiramycin, lorazepam, oleandomycin. Finally, uncertainties and issues related to the investigation being carried out at full-scale under real conditions are discussed in depth

    Selection of indicator contaminants of emerging concern when reusing reclaimed water for irrigation — A proposed methodology

    Get PDF
    Organic and microbial contaminants of emerging concern (CECs), even though not yet regulated, are of great concern in reclaimed water reuse projects. Due to the large number of CECs and their different characteristics, it is useful to include only a limited number of them in monitoring programs. The selection of the most representative CECs is still a current and open question. This study presents a new methodology for this scope, in particular for the evaluation of the performance of a polishing treatment and the assessment of the risk for the environment and the irrigated crops. As to organic CECs, the methodology is based on four criteria (occurrence, persistence, bioaccumulation and toxicity) expressed in terms of surrogates (respectively, concentrations in the secondary effluent, removal achieved in conventional activated sludge systems, Log Kow and predicted-no-effect concentration). It consists of: (i) development of a dataset including the CECs found in the secondary effluent, together with the corresponding values of surrogates found in the literature or by in-field investigations; (ii) normalization step with the assignment of a score between 1 (low environmental impact) and 5 (high environmental impact) to the different criteria based on threshold values set according to the literature and experts' judgement; (iii) CEC ranking according to their final score obtained as the sum of the specific scores; and (iv) selection of the representative CECs for the different needs. Regarding microbial CECs, the selection is based on their occurrence and their highest detection frequency in the secondary effluent and in the receiving water, the antibiotic consumption patterns, and recommendations by national and international organisations. The methodology was applied within the ongoing reuse project SERPIC resulting in a list of 30 indicator CECs, including amoxicillin, bisphenol A, ciprofloxacin, diclofenac, erythromycin, ibuprofen, iopromide, perfluorooctane sulfonate (PFOS), sulfamethoxazole, tetracycline, Escherichia coli, faecal coliform, 16S rRNA, sul1, and sul2.publishedVersio

    Surface and Groundwater Quality in South African Area—Analysis of the Most Critical Pollutants for Drinking Purposes

    Get PDF
    According to a recent report by World Health Organization, the countries which still have limited access to water for drinking purposes are mainly those in the Sub-Saharan region. (Potential) water sources for drinking needs may contain different contaminants. In this context, the current study consists in an overview of the quality of surface water and groundwater in the Republic of South Africa (RSA) and Mozambique (MZ) and provides the variability ranges of the concentrations of the main pollutants in the two countries. Chemical and physical characteristics and concentrations of macropollutants, inorganic compounds (metals) and selected microorganisms were collected for surface water and groundwater and compared with the standards for drinking water set in the two countries. It was found that in surface water, microorganisms were always at very high concentrations. In addition, nickel (in RSA) and boron and chlorine (in MZ) were the most critical compounds. It emerged that in groundwater, arsenic, lead and chlorine (in RSA) and boron, sodium and chlorine (in MZ) were the main critical pollutants. Adequate treatments in the construction of new drinking water plants in rural areas should be selected on the basis of these most critical compounds and their observed variability over time
    • 

    corecore