4,431 research outputs found

    Role of hexagonal boron nitride in protecting ferromagnetic nanostructures from oxidation

    Full text link
    Ferromagnetic contacts are widely used to inject spin polarized currents into non-magnetic materials such as semiconductors or 2-dimensional materials like graphene. In these systems, oxidation of the ferromagnetic materials poses an intrinsic limitation on device performance. Here we investigate the role of ex-situ transferred chemical vapour deposited hexagonal boron nitride (hBN) as an oxidation barrier for nanostructured cobalt and permalloy electrodes. The chemical state of the ferromagnets was investigated using X-ray photoemission electron microscopy owing to its high sensitivity and lateral resolution. We have compared the oxide thickness formed on ferromagnetic nanostructures covered by hBN to uncovered reference structures. Our results show that hBN reduces the oxidation rate of ferromagnetic nanostructures suggesting that it could be used as an ultra-thin protection layer in future spintronic devices.Comment: 7 pages, 6 figure

    Utilização de energia solar e cercas eletrificadas no manejo das pastagens no Acre.

    Get PDF
    Este documento apresenta informações que visam orientar técnicos e produtores rurais do Acre para o uso eficiente da energia solar e das cercas eletrificadas no manejo de suas propriedades.bitstream/item/116523/1/7296.pd

    THERMAL POST-BUCKLING OF SLENDER ELASTIC RODS WITH DIFFERENT BOUNDARY CONDITIONS

    Get PDF
    This paper presents mathematical formulation, critical buckling temperature and analytical and numerical solutions for the thermal post-buckling behavior of slender rods subjected to uniform thermal load. The material is assumed to be linear elastic, homogeneous and isotropic. Furthermore, large displacements are considered hence the formulation is geometrically non-linear. Three different boundary conditions are assumed: (i) double-hinged non-movable, (ii) hinged non-movable at one end, whereas at the other end longitudinal displacement is constrained by a linear spring, and (iii) double-fixed non-movable. The governing equations are derived from geometrical compatibility, equilibrium of forces and moments, constitutive equations and strain-displacement relation, yielding a set of six first-order non-linear ordinary differential equations with boundary conditions specified at both ends, which constitutes a complex boundary value problem. The buckling and post-buckling solutions are respectively accomplished assuming infinitesimal and finite rotations. The results are presented in non-dimensional graphs for a range of temperature gradients and different values of slenderness ratios, and it is shown that this parameter governs the rod post-buckling response. The influence of the boundary conditions is evaluated through graphic results for deformed configuration, maximum deflection, maximum inclination angle and maximum curvature in the rod

    Magnetic anisotropy modulation of magnetite in Fe3O4/BaTiO3(100) epitaxial structures

    Full text link
    Temperature dependent magnetometry and transport measurements on epitaxial Fe3O4 films grown on BaTiO3(100) single crystals by molecular beam epitaxy show a series of discontinuities, that are due to changes in the magnetic anisotropy induced by strain in the different crystal phases of BaTiO3. The magnetite film is under tensile strain at room temperature, which is ascribed to the lattice expansion of BaTiO3 at the cubic to tetragonal transition, indicating that the magnetite film is relaxed at the growth temperature. From the magnetization versus temperature curves, the variation in the magnetic anisotropy is determined and compared with the magnetoelastic anisotropies. These results demonstrate the possibility of using the piezoelectric response of BaTiO3 to modulate the magnetic anisotropy of magnetite films.Comment: 4 pages, 4 figure
    corecore