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ABSTRACT 
 
This paper presents mathematical formulation, critical buckling temperature 
and analytical and numerical solutions for the thermal post-buckling 
behavior of slender rods subjected to uniform thermal load. The material is 
assumed to be linear elastic, homogeneous and isotropic. Furthermore, large 
displacements are considered hence the formulation is geometrically non-
linear. Three different boundary conditions are assumed: (i) double-hinged 
non-movable, (ii) hinged non-movable at one end, whereas at the other end 
longitudinal displacement is constrained by a linear spring, and (iii) double-
fixed non-movable. The governing equations are derived from geometrical 
compatibility, equilibrium of forces and moments, constitutive equations 
and strain-displacement relation, yielding a set of six first-order non-linear 
ordinary differential equations with boundary conditions specified at both 
ends, which constitutes a complex boundary value problem. The buckling 
and post-buckling solutions are respectively accomplished assuming 
infinitesimal and finite rotations. The results are presented in non-
dimensional graphs for a range of temperature gradients and different values 
of slenderness ratios, and it is shown that this parameter governs the rod 
post-buckling response. The influence of the boundary conditions is 
evaluated through graphic results for deformed configuration, maximum 
deflection, maximum inclination angle and maximum curvature in the rod. 
 
Keywords: Elastic Rods, Thermal Buckling, Thermal Post-Buckling. 

 
 
NOMENCLATURE 
 
A  cross-sectional area 
C  constants 
E  Young’s modulus 

ss kK ,  spring stiffness  
I  cross-sectional second moment of inertia 
lL,  length 
mM ,  bending moment 

n  sequential integer number 
P  compressive load 
sS ,  arc-length 
tT ,  temperature 
YX ,  and yx,  Cartesian coordinates 

maxmax , yY  maximum vertical displacement 
 
Greek symbols 
 
α  thermal expansion coefficient 
β ,θ  angles 

tT ∆∆ ,  temperature variation 
δ,∆  displacement 

ε  strain 
κ,Κ  curvature 

λ  rod slenderness ratio 
π  Pi number 

INTRODUCTION 
 

There are many practical cases where buckling 
and post-buckling of slender rods may occur. The 
narrow relationship between the thermal buckling of 
slender components - such as railroad tracks, concrete 
road pavements, optical fibers, satellite tethers or 
subsea and buried pipelines - and the buckling of rods 
has long been recognized. It is therefore of practical 
design interest to employ analytical formulations. 
Pipeline instability first works were based on similar 
problems occurred with raiload tracks (Martinet, 
1936 and Kerr, 1974). Analytical and numerical 
buckling modeling for offshore pipelines has rapidly 
progressed over the last few years, since the classical 
design formulations developed by Hobbs (1984) and 
Hobbs and Liang (1989), which are extensively 
accepted by industry. Similar studies were presented 
by Ju and Kyriakides (1998), Chiou and Chi (1996) 
and Taylor and Gan (1996). The recent demand for 
higher temperature flowlines and the lack of 
publications about the subject unleashed the interest 
to further study this phenomenon. Several papers that 
describe the structural behavior of pipelines subjected 
to the action of thermal loading are important to this 
study. 

The problem of elastic stability of rods 
subjected to mechanical and thermal compressive 
loads has been well studied since Bernoulli, Euler 
and Lagrange investigated the classical problem of 
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the elastica, i.e., the equilibrium configurations of 
inextensible rods under axial compression. Love’s 
(1944) seminal textbook on theory of mathematical 
elasticity has been extensively used in many fields of 
applied mechanics, establishing the basis for most 
research on the equilibrium of elastic rods. Some 
papers were published on buckling and post-buckling 
behavior obtaining solutions for the differential 
equation that governs the elastic line of an initially 
straight slender rod (the elastica problem) subjected 
to different compressive loads and boundary 
conditions (Theocaris and Panayotounakos, 1982; 
Stemple, 1990; Wang, 1997; Filipich and Rosales, 
2000 and Vaz and Silva, 2002). 

The problem of elastic stability of rods 
subjected to thermal loads and mechanical 
compressive loads are substantially different and in 
fact not as many articles have been published 
regarding thermal buckling of rods. Buckling and 
post-buckling behavior in the sense of Koiter were 
treated within the framework of the general 
branching theory of discrete systems. Coffin and 
Bloom (1999) developed an elliptic integral solution 
for the post-buckling response of a linear-elastic and 
hygrothermal beam fully restrained against axial 
expansion. They assumed linear thermal strain-
temperature relationship and solved the set of 
differential equations for the undeformed 
configuration, hence two coupled integral elliptic 
equations needed to be simultaneously solved. Based 
on the exact non-linear geometric theory for 
extensible rods and using a shooting method, a 
computational analysis for the thermal post-buckling 
behavior of rods with axially non-movable pinned-
pinned ends as well as fixed-fixed ends was proposed 
by Li and Cheng (2000). More recently, Li et al. 
(2002) presented a mathematical model for the post-
buckling of an elastic rod with pinned-fixed ends 
when a quasi-static increasing temperature is applied. 
Using the shooting method in conjunction with the 
concept of analytical continuation, the non-linear 
boundary value problem consisting of ordinary 
differential equations was numerically solved. The 
results showed that the critical buckling temperature 
and the post-buckled rod configuration were 
sensitively influenced by the slenderness ratio. 
Finally, Vaz and Solano (2003 and 2004) and Solano 
and Vaz (2004) developed a closed-form analytical 
solution via uncoupled elliptic integrals for the 
buckling and post-buckling analysis of slender elastic 
rods subjected to uniform thermal loads. 

This paper investigates the buckling and post-
buckling response of an initially straight slender rod 
made of linear elastic material. A temperature 
gradient is assumed uniform along the rod and 
expansion is prevented by different boundary 
conditions. The analytical solution is obtained by 
uncoupled elliptic integrals, which are derived from 
the governing equations in the deformed 
configuration, and numerical technique employs a 

classical Runge-Kutta high order solution to solve the 
set of non-linear ordinary differential equations. This 
study may be qualitatively expanded to pipelines and 
other slender structures subjected to thermal loads. 
 
MATHEMATICAL FORMULATION 
 

Consider a uniformly heated slender rod with 
ends subject to different boundary conditions in its 
initial and buckled configurations, as shown in Fig. 1. 
Whereas in Fig. 1a the rod has non-movable double-
hinged ends (bi-pinned), in Fig. 1b one edge is 
considered non-movable and the other edge is limited 
by a linear spring of stiffness constant SK , which 
restrains the longitudinal expansion. Finally in Fig. 
1c the rod has non-movable double-fixed (bi-
clamped) ends. 
 

 
 

Figure 1. Schematic of a Heated Elastic Rod. 
 

In this paper (X,Y) constitute the rod central line 
Cartesian coordinates, ∆T is the uniform temperature 
gradient, P is the compressive load arising from the 
expansion constraint, M0 is the end constrained 
moment, S is the arc-length, S* is the deformed arc-
length, L and L* are respectively the initial and 
deformed rod length, and ∆ is the edge lateral 
displacement. 

The governing equations are derived from the 
geometrical compatibility, equilibrium of forces and 
moments, constitutive equations and strain-
displacement relation, following the development 
presented by Vaz and Solano (2003 and 2004) and 
Solano and Vaz (2004) considering the infinitesimal 
deformed element of the rod (see Fig. 2). 
 

 
 

Figure 2. Infinitesimal Element of the Deflected Rod. 
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Where M is the bending moment, θ is the angle 
formed by the curve tangent and the longitudinal 
axis. 

Furthermore, non-dimensional variables may be 
conveniently defined by using the following 
relations: LlL ** =  LsS = , LxX = , LyY = , 

LsS ** = , L/κ=Κ , IAL /22 =λ , 2/ LpEIP = , 
LmEIM /0 = , 3/ LEIkK sS = , Lδ=∆  and 
αλ2/tT ∆=∆ . Where: Κ  is the curvature, E  is the 

Young’s modulus, I  is the cross-sectional second 
moment of inertia, A  is the cross-sectional area, λ  
is the rod slenderness ratio and α  is the thermal 
expansion coefficient. 

Finally, assuming linear elastic, homogeneous 
and isotropic materials (constitutive relations given 
by Hooke`s Law), and still considering the state of 
pure bending, the governing equations for slender 
rods subjected to a uniform temperature gradient are 
written as: 
 

θcos
*

=
ds
dx  (1.1)

θsin
*

=
ds
dy  (1.2)

κθ
=

*ds
d  (1.3)

( )ε+
=

1
1

*ds
ds  (1.4)

θκ sin
*

p
ds
d

−=  (1.5)

0
*

=
ds
dp  (1.6)

 
Where: 
 

θ
λλ

ε cos
22

pt
−

∆
=  (1.7)

 
is the central line strain, defined as the ratio between 
the elongation in deformed configuration and its 
initial length. 

In summary, a slender rod tends to expand when 
subjected to a temperature gradient t∆  and, 
consequently, a compressive load p  appears if 
movement of the ends is constrained. Hence, the total 
strain is given by the addition of the thermal strain 
and the strain due to the compressive load 
( cT εεε += ). The first term on the right hand side of 
Eq. (1.7) defines the thermal strain for materials 
whose strain-temperature dependence is linear. 

Associated to the governing equations (1) the 
following boundary equations should be fulfilled: 
 
 

( ) 0)()0(0 * === lyyx  (2.1)

0)(1)()0( ** ==−= llx κκ  (2.2)

0)(1)()0( ** ==−−= llx κδκ  (2.3)

0)(1)()0( ** ==−= llx θθ  (2.4)
 
Where Eqs. (2.2), (2.3) and (2.4) represent 
respectively bi - pinned, pinned - spring constrained 
and bi - clamped boundary conditions.  Furthermore 
Eq. (2.1) must be satisfied for the three boundary 
conditions investigated. 

Hence the influence of the slenderness ratio and 
degree of edge mobility (i.e., spring stiffness) on the 
critical buckling load and temperature on the rod 
post-buckled deformed configuration may be 
analytically and numerically calculated. 
 
CRITICAL BUCKLING TEMPERATURE 
 

The determination of the critical buckling load 
is found applying the governing equations for the rod 
in a slightly deformed configuration. As the rotation 
θ  is assumed small compared to unity, 1cos ≅θ  and 

θθ ≅sin . Consequently, the governing equation may 
be reduced to: 
 

0
2

2

4

4

=+
dx
yd

p
dx
yd  (3)

 
A general solution for the homogeneous 

differential equation (3) with constant coefficients is: 
 

( ) 4321 )cos()sin( CxCxpCxpCxy +++= (4)
 
Double-hinged non-movable (bi-pinned) ends 
 

The application of boundary conditions yields 
0)sin(1432 ==== pCCCC , and to avoid trivial 

solution 1C  must be different from zero, which can 

be satisfied if 0)sin( =p  and πnp = , where n  
is a positive integer. The smallest eigenvalue in this 
case corresponds to 1=n , i.e., the first buckling load 
corresponds to: 
 

2π=cp  (5)
 

Subjected to a uniform temperature increase, the 
rod tends to expand, but until it reaches the critical 
buckling load, its strain is zero )0( =ε , hence: 
 

0=−∆ pt  (6)
 

Equation (5) can be substituted in Eq. (6) to find 
the critical buckling temperature: 
 

2π==∆ ptc  (7)
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Longitudinal displacement constrained by a linear 
spring 
 

Applying the boundary conditions yields 
0])1sin[(1432 =+=== δδδ ss kkCCCC , and to 

avoid a trivial solution πδδ nk s =+ )1( . The 
smallest eigenvalue corresponds to 1=n , hence the 
critical lateral displacement for first buckling mode is 
given by: 
 

w
w

c 6
)2( 2−

=δ  (8)

 

where: 
3/1

2
2

8112121088 







+++= πππ

s
ss

k
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w  
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Figure 3. Critical Displacement and Load as a 

Function of the Spring Stiffness. 
 

In Fig. 3 the critical displacement and buckling 
load are presented as a function of the spring 
stiffness. As the spring stiffness increases the end 
displacement and the buckling load tend to zero and 

2π , respectively. On the other hand as sk  tends to 
zero, cδ  grows to infinity and the critical buckling 
load tends to zero. However, note that the rod strain 
has been limited to 2%, which gives 32.474=sk , 

02.0=cδ  and 4864.9=cp . 
Until the critical buckling load ( cp ) is reached a 

uniformly heated rod tends to expand maintaining its 
straight configuration (i.e., cδε = ), hence from Eq. 
(1.7): 
 

)( 2λδ +=∆ sc kt  (9)
 

Note that three parameters control the critical 
buckling temperature: the spring stiffness sk , the rod 
slenderness ratio λ  and the critical lateral 
displacement cδ  being a function of sk  through Eq. 
(8). 

The physical and geometrical rod properties 
should be carefully selected to ensure practical and 
real meaning to the analysis, and concomitantly 
avoiding violation of assumptions included in the 
mathematical formulation. Therefore, high 
temperatures and strains should not be considered. 
Furthermore, the parametric study was conducted for 
rod slenderness ratios 002and150,100,50=λ . 

Figure 4 presents the critical buckling 
temperature as a function of the spring stiffness for 
four rod slenderness ratios. As the spring stiffness 
increases the boundary conditions tend to double-
hinged non-movable and as expected the critical 
temperature tends to 2π . 
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Figure 4. Critical Temperature as a Function of the 

Spring Stiffness. 
 
Double-fixed non-movable (bi-clamped) ends 
 

Application of respective boundary conditions 
yields a homogeneous equation system and for a 
nontrivial solution it may be shown that either 

0)2sin( =p  or 2)2tan( pp = . 

Consequently, the smallest eigenvalue is πnp 2= , 
where n  is a positive integer. The smallest 
eigenvalue corresponds to 1=n : 
 

24π=cp  (10)
 

The strain is zero at the buckling condition, 
hence: 
 

0=−∆ pt  (11)
 

Equation (10) can be substituted in Eq. (11) to 
find the critical buckling temperature: 
 

24π==∆ ptc  (12)
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ANALYTICAL AND NUMERICAL 
SOLUTIONS 
 
Analytical Solution 
 

For the boundary conditions: (i) double-hinged 
non-movable and (ii) hinged non-movable and 
constrained by a linear spring, a closed-form 
analytical solution for the thermal post-buckling of 
slender elastic rod uniformly heated is developed via 
complete elliptic integrals derived from the governing 
equations in the deformed configuration, following 
similar works developed by Vaz and Solano (2003 
and 2004) and Solano and Vaz (2004). The material 
is assumed linear elastic and its thermal strain-
temperature relationship is linear. It is more 
convenient to work with the slope angle θ  (Bažant 
and Cedolin (1991)), so the non-dimensional 
differential Eqs. (1.3) and (1.5) yield: 
 

θθ sin
2*

2

p
ds
d

−=  (13)

 
The solution of the non-linear ordinary 

differential equation (13) had been earlier solved by 
Lagrange (a kinetic analogy of columns; Love [8]). 
Integrating Eq. (13) and applying the boundary 
conditions at the ends of the rod (i.e., 

βθθ =−= )()0( *l  and 0)()0( * == lκκ ) yield: 
 

( )βθθ coscos2
*

−−= p
ds
d  (14)

 
Recurring to familiar trigonometric identities to 

rewrite the Eq. (14), separating and changing 
variables ( φθ sin2sin c= , where 2sin β=c ) and 
after some algebraic manipulation followed by an 
integration yields the deformed rod length: 
 

∫ −
=

2

0
22

*

sin1
2 π

φ
φ

c
d

p
l  (15)

 
The slender rod deflected configuration may be 

obtained from the non-dimensional Eqs. (1.1) and 
(1.2) calculating the x  and y  coordinates 
respectively: 
 

∫ −

−
=

2

22

22

0 sin1
sin211 π

φ

φ
φ
φ d

c
c

p
x  (16.1)

0cos2 φ
p
cy =  (16.2)

 
And 22 0 πφπ ≤≤− . Since yp−=κ  the rod 
curvature at the deformed configuration may now be 
readily obtained: 
 

0cos2 φκ pc−=  (17)

For the boundary condition double-hinged non-
movable, symmetry implies that the point of 
maximum displacement occurs for 21)2( * =lx , so 
one may calculate p  for this condition as a simple 
application of Eq. (16.1): 
 

2
2

0
22

22

sin1
sin212













−

−
= ∫

π

φ
φ
φ d

c
cp  (18.1)

 
Similarly, for one edge limited by a linear 

spring, symmetry implies that the point of maximum 
displacement occurs for 2)1()2( * δ+=lx , so one 
may calculate δ  for this condition as a simple 
application of Eq. (16.1): 
 

W
W

6
)2( 2−

=δ  (18.2)

 

where: 
3/1

8112121088











+++= Ik

k
I

k
IW s

ss
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2
2

0
22

22

sin1
sin212















−

−
= ∫

π

φ
φ
φ d

c
cI  

 
Therefore for each deformed configuration 

(which is related to a temperature gradient), i.e., for a 
given slope β , βsin=c  is calculated, and 
consequently p  ( δskp =  for edge limited by a 
linear spring) from Eqs. (18.1) and (18.2). Finally, it 
is possible to find the coordinates ( x , y ) and 
curvature κ  along the rod from Eqs. (16.1), (16.2) 
and (17). 

The temperature gradient associated with the 
deformed configuration may be obtained considering 
the Eq. (1.7). Thus: 
 

∫ −
−

+−=∆
2

0
2122

222
*2

)sin1(
)sin21(

2)1(
π

φ
φ
φ

λ d
c
c

plt  (19)

 
This expression may be readily evaluated once p  
and *L  are known. 
 
Numerical Solution 
 

It is difficult to obtain analytical solutions to the 
rod with bi-clamped ends. Three boundary conditions 
are given at each rod end, which characterizes a two-
point boundary value problem. Several techniques 
have been employed for this problem (e.g. finite 
element methods, finite difference schemes and 
energy methods). Solutions via the shooting method 
with direct integration are conveniently employed in 
linear or non-linear problems when only one 
parameter is required for interpolation but they 
become rather complex if two conditions are sought 
in non-linear systems. 
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However, a simple but robust way to transform 
a boundary into an initial value problem is available 
in Mathcad (2000) through the following procedure: 
(a) initial missing values are guessed; (b) the 
boundary value endpoints are specified; (c) the set of 
differential equations are defined; (d) a load function 
which returns the initial conditions is established; (e) 
a score function to measure the distance between 
terminal conditions and desired terminal conditions is 
employed; (f) the equivalent initial conditions are 
finally calculated. From this point, a classical Runge-
Kutta high order solution may be employed to solve 
the set of non-linear ordinary differential equations. 
 
POST-BUCKLING RESULTS ANALYSIS 
 

The closed-form solution is implemented 
through a computational program developed in the 
mathematical software Mathcad (2000) and a 
parametric study is carried out with the purpose of 
analysing the results. The most significant results 
regarding the phenomenon of rod thermal post-
buckling with (i) bi-pinned and (iii) bi-clamped are 
presented for typical values of slenderness ratio: 
compressive load (Fig. 5a), maximum deflection 
(Fig. 5b), maximum inclination angle (Fig. 5c) and 
maximum curvature (Fig. 5d). 

Once the critical buckling load is reached and 
the temperature is progressively increased, the 
compressive force considerably decreases, as it can 
be observed at Fig. 5. The maximum rod deflection 
( maxy ), which occurs at 21)2( * =lx , increases with 
temperature as shown at Fig. 5b. The maximum 
inclination angle ( maxθ ) also increases with 
temperature (see Fig. 5c) but it occurs at the rod ends. 
The maximum curvature (Fig. 5d) occurs at the 
middle of the rod and also increases, in modulus, as 
temperature is progressively increased. 
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Figure 5a. Compressive Load. 
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Figure 5b. Maximum Deflection. 
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Figure 5c. Maximum Angle. 
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Figure 5d. Maximum Curvature. 
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The results for the rod with (ii) pinned-spring 
constrained ends are shown for typical values of 
slenderness ratio and stiffness in Figs. 6a to 6d. The 
maximum deflection occurs at 2)1()2( * δ+=lx . 
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Figure 6a. Compressive Load. 
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Figure 6b. Maximum Deflection. 
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Figure 6c. Maximum Angle. 
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Figure 6d. Maximum Curvature. 
 

Figure 7 presents the rod configurations for a 
total deformation %2=ε  and four spring stiffness 

∞= and1250,750,500sk . The required 
temperatures for slenderness ratios 200and50=λ  
are also displayed. 
 

 
 

Figure 7. Deflected Configurations for Total Strain 
%2=ε . 

 
CONCLUSIONS 
 

The mathematical formulations, analytical and 
numerical solutions presented in this paper have been 
successfully employed in a two-point boundary value 
problem governed by a set of six first-order non-
linear ordinary differential equations. The post-
buckling analysis of slender elastic rods subjected to 
uniform temperature variation is highly dependent on 
the prescribed end conditions. 

The governing equations are written in non-
dimensional form and it is noted that two parameters 
control the solution: the slenderness ratio and the 
spring stiffness. The critical buckling displacement, 
load and temperature are calculated and a parametric 
study is performed. A closed-form analytical solution 
via uncoupled elliptic integrals and a numerical 
technique were developed allowing a complete 
parametric study. 
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The results, presented in non-dimensional 
graphs, were obtained as a function of the slenderness 
ratio, temperature and spring stiffness. 
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