5,199 research outputs found

    Dilaton Quantum Cosmology with a Schrodinger-like equation

    Full text link
    A quantum cosmological model with radiation and a dilaton scalar field is analysed. The Wheeler-deWitt equation in the mini-superspace induces a Schr\"odinger equation, which can be solved. An explicit wavepacket is constructed for a particular choice of the ordering factor. A consistent solution is possible only when the scalar field is a phantom field. Moreover, although the wavepacket is time dependent, a Bohmian analysis allows to extract a bouncing behaviour for the scale factor.Comment: 14 pages, 3 figures in eps format. Minors corrections, new figure

    The Adhesion Strength of Impact Ice Measured Using a Modified Lap Joint Test

    Get PDF
    Numerous methodologies have been utilized to measure the adhesion strength of impact ice, and the data reported in the literature varies significantly from test to test. In order to initiate an investigation to determine the cause of this disparity, a new test methodology has been developed and utilized in the Icing Research Tunnel at the NASA Glenn Research Center. Data was obtained while varying the temperature, test section velocity, and cloud droplet mean volumetric diameter. The first data set acquired using this new test method is presented. New trends demonstrate the effect of annealing ice samples, with temperature being a key variable. Observations during the test and analysis of the results suggest the presence of large residual stresses in the samples

    NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities

    Get PDF
    NRLMSIS® 2.0 is an empirical atmospheric model that extends from the ground to the exobase and describes the average observed behavior of temperature, eight species densities, and mass density via a parametric analytic formulation. The model inputs are location, day of year, time of day, solar activity, and geomagnetic activity. NRLMSIS 2.0 is a major, reformulated upgrade of the previous version, NRLMSISE-00. The model now couples thermospheric species densities to the entire column, via an effective mass profile that transitions each species from the fully mixed region below ~70 km altitude to the diffusively separated region above ~200 km. Other changes include the extension of atomic oxygen down to 50 km and the use of geopotential height as the internal vertical coordinate. We assimilated extensive new lower and middle atmosphere temperature, O, and H data, along with global average thermospheric mass density derived from satellite orbits, and we validated the model against independent samples of these data. In the mesosphere and below, residual biases and standard deviations are considerably lower than NRLMSISE-00. The new model is warmer in the upper troposphere and cooler in the stratosphere and mesosphere. In the thermosphere, N2 and O densities are lower in NRLMSIS 2.0; otherwise, the NRLMSISE-00 thermosphere is largely retained. Future advances in thermospheric specification will likely require new in situ mass spectrometer measurements, new techniques for species density measurement between 100 and 200 km, and the reconciliation of systematic biases among thermospheric temperature and composition data sets, including biases attributable to long-term changes

    NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities

    Get PDF
    NRLMSIS® 2.0 is an empirical atmospheric model that extends from the ground to the exobase and describes the average observed behavior of temperature, eight species densities, and mass density via a parametric analytic formulation. The model inputs are location, day of year, time of day, solar activity, and geomagnetic activity. NRLMSIS 2.0 is a major, reformulated upgrade of the previous version, NRLMSISE-00. The model now couples thermospheric species densities to the entire column, via an effective mass profile that transitions each species from the fully mixed region below ~70 km altitude to the diffusively separated region above ~200 km. Other changes include the extension of atomic oxygen down to 50 km and the use of geopotential height as the internal vertical coordinate. We assimilated extensive new lower and middle atmosphere temperature, O, and H data, along with global average thermospheric mass density derived from satellite orbits, and we validated the model against independent samples of these data. In the mesosphere and below, residual biases and standard deviations are considerably lower than NRLMSISE-00. The new model is warmer in the upper troposphere and cooler in the stratosphere and mesosphere. In the thermosphere, N2 and O densities are lower in NRLMSIS 2.0; otherwise, the NRLMSISE-00 thermosphere is largely retained. Future advances in thermospheric specification will likely require new in situ mass spectrometer measurements, new techniques for species density measurement between 100 and 200 km, and the reconciliation of systematic biases among thermospheric temperature and composition data sets, including biases attributable to long-term changes

    Local helioseismology of sunspot regions: comparison of ring-diagram and time-distance results

    Full text link
    Local helioseismology provides unique information about the subsurface structure and dynamics of sunspots and active regions. However, because of complexity of sunspot regions local helioseismology diagnostics require careful analysis of systematic uncertainties and physical interpretation of the inversion results. We present new results of comparison of the ring-diagram analysis and time-distance helioseismology for active region NOAA 9787, for which a previous comparison showed significant differences in the subsurface sound-speed structure, and discuss systematic uncertainties of the measurements and inversions. Our results show that both the ring-diagram and time-distance techniques give qualitatively similar results, revealing a characteristic two-layer seismic sound-speed structure consistent with the results for other active regions. However, a quantitative comparison of the inversion results is not straightforward. It must take into account differences in the sensitivity, spatial resolution and the averaging kernels. In particular, because of the acoustic power suppression, the contribution of the sunspot seismic structure to the ring-diagram signal can be substantially reduced. We show that taking into account this effect reduces the difference in the depth of transition between the negative and positive sound-speed variations inferred by these methods. Further detailed analysis of the sensitivity, resolution and averaging properties of the local helioseismology methods is necessary for consolidation of the inversion results. It seems to be important that both methods indicate that the seismic structure of sunspots is rather deep and extends to at least 20 Mm below the surface, putting constraints on theoretical models of sunspots.Comment: 10 pages, 10 figures, submitted to Journal of Physics: Conference Series (JPCS) GONG 2010 - SoHO 24 "A new era of seismology of the Sun and solar-like stars", June 27 - July 2, 2010 Aix-en-Provence, Franc

    Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions

    Get PDF
    Increased reflectance from the inclusion of highly scattering particles at low volume fractions in an insulating dielectric offers a promising way to reduce radiative thermal losses at high temperatures. Here, we investigate plasmonic resonance driven enhanced scattering from microinclusions of low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating composite to tailor its infrared reflectance for minimizing thermal losses from radiative transfer. To this end, we compute the spectral properties of the microcomposites using Monte Carlo modeling and compare them with results from Fresnel equations. The role of particle size-dependent Mie scattering and absorption efficiencies, and, scattering anisotropy are studied to identify the optimal microinclusion size and material parameters for maximizing the reflectance of the thermal radiation. For composites with Si and Ge microinclusions we obtain reflectance efficiencies of 57 - 65% for the incident blackbody radiation from sources at temperatures in the range 400 - 1600 {\deg}C. Furthermore, we observe a broadbanding of the reflectance spectra from the plasmonic resonances due to charge carriers generated from defect states within the semiconductor bandgap. Our results thus open up the possibility of developing efficient high-temperature thermal insulators through use of the low-bandgap semiconductor microinclusions in insulating dielectrics.Comment: Main article (8 Figures and 2 Tables) + Supporting Information (8 Figures

    Prior Mating Experience Modulates the Dispersal of Drosophila in Males More Than in Females

    Get PDF
    Cues from both an animal’s internal physiological state and its local environment may influence its decision to disperse. However, identifying and quantifying the causative factors underlying the initiation of dispersal is difficult in uncontrolled natural settings. In this study, we automatically monitored the movement of fruit flies and examined the influence of food availability, sex, and reproductive status on their dispersal between laboratory environments. In general, flies with mating experience behave as if they are hungrier than virgin flies, leaving at a greater rate when food is unavailable and staying longer when it is available. Males dispersed at a higher rate and were more active than females when food was unavailable, but tended to stay longer in environments containing food than did females. We found no significant relationship between weight and activity, suggesting the behavioral differences between males and females are caused by an intrinsic factor relating to the sex of a fly and not simply its body size. Finally, we observed a significant difference between the dispersal of the natural isolate used throughout this study and the widely-used laboratory strain, Canton-S, and show that the difference cannot be explained by allelic differences in the foraging gene

    Adsorção de atrazina em solo tropical sob plantio direto e convencional.

    Get PDF
    Made available in DSpace on 2015-07-23T05:26:23Z (GMT). No. of bitstreams: 1 10663331321PB.pdf: 139101 bytes, checksum: c9dcb02e3f2d828ce2112abe210d1281 (MD5) Previous issue date: 2008-02-2

    Detection of Pneumocystis DNA in samples from patients suspected of bacterial pneumonia- a case-control study

    Get PDF
    BACKGROUND: Pneumocystis jiroveci (formerly known as P. carinii f.sp. hominis) is an opportunistic fungus that causes Pneumocystis pneumonia (PCP) in immunocompromised individuals. Pneumocystis jiroveci can be detected by polymerase chain reaction (PCR). To investigate the clinical importance of a positive Pneumocystis-PCR among HIV-uninfected patients suspected of bacterial pneumonia, a retrospective matched case-control study was conducted. METHODS: Respiratory samples from 367 patients suspected of bacterial pneumonia were analysed by PCR amplification of Pneumocystis jiroveci. To compare clinical factors associated with carriage of P. jiroveci, a case-control study was done. For each PCR-positive case, four PCR-negative controls, randomly chosen from the PCR-negative patients, were matched on sex and date of birth. RESULTS: Pneumocystis-DNA was detected in 16 (4.4%) of patients. The median age for PCR-positive patients was higher than PCR-negative patients (74 vs. 62 years, p = 0.011). PCR-positive cases had a higher rate of chronic or severe concomitant illness (15 (94%)) than controls (32 (50%)) (p = 0.004). Twelve (75%) of the 16 PCR positive patients had received corticosteroids, compared to 8 (13%) of the 64 PCR-negative controls (p < 0.001). Detection of Pneumocystis-DNA was associated with a worse prognosis: seven (44%) of patients with positive PCR died within one month compared to nine (14%) of the controls (p = 0.01). None of the nine PCR-positive patients who survived had developed PCP at one year of follow-up. CONCLUSIONS: Our data suggest that carriage of Pneumocystis jiroveci is associated with old age, concurrent disease and steroid treatment. PCR detection of P. jiroveci has low specificity for diagnosing PCP among patients without established immunodeficiency. Whether overt infection is involved in the poorer prognosis or merely reflects sub-clinical carriage is not clear. Further studies of P. jiroveci in patients receiving systemic treatment with corticosteroids are warranted
    corecore