939 research outputs found

    Student Ownership of Service-Learning Projects: including Ourselves in Our Community

    Get PDF
    Service-Learning projects can be an effective tool to actively engage students with learning disabilities while also providing needed community service. This article details a five-phase construction plan designed to guide students through the process of planning service learning projects with students responsible for all steps and the teacher assuming the role of facilitator and guide. Service-Learning projects are encouraged as a means of including students with disabilities in their communities while building academic skills and assuming responsibilities

    Structuring a Teacher Education Program for Faculty Collaboration and Second-Order Change

    Get PDF
    The purpose of this paper is to describe the structure and functions of an integrated elementary special education undergraduate teacher program (Integrated Elementary/Special Education Teacher Education Program, ITEP). By abandoning our old “enhancement model” of teacher education, we redesigned our program into a “merged model.” We examine this restructuring from the perspective of first- and second- order change, and we discuss the obstacles we found that prohibit meaningful second-order change. Finally, we briefly discuss how our experiences in designing ITEP and our state’s devastating fiscal crisis have affected our teacher-education programs and nudged us into more authentic second-order changes

    Student Ownership of Service-Learning Projects: Including Ourselves in Our Community

    Get PDF
    Service-learning projects can be an effective tool to actively engage students with learning disabilities while also providing needed community service. This article details a five-phase construction plan designed to guide students through the process of planning service learning projects with students responsible for all steps and the teacher assuming the role of facilitator and guide. Service-learning projects are encouraged as a means of including students with disabilities in their community while building academic skills and assuming personal responsibility

    Preliminary operational results from the Willard solar power system

    Get PDF
    The solar powered system located near Willard, New Mexico, generates mechanical or electrical power at a capacity of 19 kW (25 HP). The solar collection system incorporates east/west tracking parabolic trough collectors with a total aperture area of 1275 sq m (13,720 sq ft). The hot oil type thermal energy storage is sufficient for approximately 20 hours of power system operation. The system utilizes a reaction type turbine in conjunction with an organic Rankine cycle engine. Total collector field efficiency reaches a maximum of 20 percent near the winter solstice and about 50 percent during the summer. During the month of July, 1979, the system pumped 60 percent of the 35,300 cu m (28.6 acre-feet) of water delivered. Operating efficiencies for the turbine component, organic Rankine cycle engine and the complete power system are respectively 65 to 75 percent, 12 to 15 percent and 5 to 6 percent. Significant maintenance time was expended on both the collector and power systems throughout the operational period

    Investigation of the magnetic structure and crystal field states of pyrochlore antiferromagnet Nd2Zr2O7

    Get PDF
    We present synchrotron x-ray diffraction, neutron powder diffraction and time-of-flight inelastic neutron scattering measurements on the rare earth pyrochlore oxide Nd2Zr2O7 to study the ordered state magnetic structure and cystal field states. The structural characterization by high-resolution synchrotron x-ray diffraction confirms that the pyrochlore structure has no detectable O vacancies or Nd/Zr site mixing. The neutron diffraction reveals long range all-in/all-out antiferromagnetic order below T_N ~ 0.4 K with propagation vector k = (0 0 0) and an ordered moment of 1.26(2) \mu_B/Nd at 0.1 K. The ordered moment is much smaller than the estimated moment of 2.65 \mu_B/Nd for the local Ising ground state of Nd3+ (J=9/2) suggesting that the ordering is partially suppressed by quantum fluctuations. The strong Ising anisotropy is further confirmed by the inelastic neutron scattering data which reveals a well-isolated dipolar-octupolar type Kramers doublet ground state. The crystal field level scheme and ground state wavefunction have been determined.Comment: 12 pages, 15 figures, 2 table

    Diversification and hybridization in firm knowledge bases in nanotechnologies

    Get PDF
    The paper investigates the linkages between the characteristics of technologies and the structure of a firms' knowledge base. Nanotechnologies have been defined as converging technologies that operate at the nanoscale, and which require integration to fulfill their economic promises. Based on a worldwide database of nanofirms, the paper analyses the degree of convergence and the convergence mechanisms within firms. It argues that the degree of convergence in a firm's nano-knowledge base is relatively independent from the size of the firm's nano-knowledge base. However, while firms with small nano-knowledge bases tend to exploit convergence in each of their patents/publications, firms with large nano-knowledge bases tend to separate their nano-R&D activities in the different established fields and achieve diversity through the juxtaposition of the output of these independent activitie

    Effective One-Dimensional Coupling in the Highly-Frustrated Square-Lattice Itinerant Magnet CaCo2y_{\mathrm{2}-y}As2_{2}

    Get PDF
    Inelastic neutron scattering measurements on the itinerant antiferromagnet (AFM) CaCo2y_{\mathrm{2}-y}As2_{2} at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. These results are shown to arise from near-perfect bond frustration within the J1J_1-J2J_2 Heisenberg model on a square lattice with ferromagnetic J1J_1, and hence indicate that the extensive previous experimental and theoretical study of the J1J_1-J2J_2 Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems

    Electron doping evolution of the magnetic excitations in NaFe1x_{1-x}Cox_xAs

    Get PDF
    We use time-of-flight (ToF) inelastic neutron scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe1x_{1-x}Cox_xAs with x=0,0.0175,0.0215,0.05,x=0, 0.0175, 0.0215, 0.05, and 0.110.11. The effect of electron-doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden and suppress low energy (E80E\le 80 meV) spin excitations compared with spin waves in undoped NaFeAs. However, high energy (E>80E> 80 meV) spin excitations are weakly Co-doping dependent. Integration of the local spin dynamic susceptibility χ(ω)\chi^{\prime\prime}(\omega) of NaFe1x_{1-x}Cox_xAs reveals a total fluctuating moment of 3.6 μB2\mu_B^2/Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in the Co-overdoped nonsuperconducting NaFe0.89_{0.89}Co0.11_{0.11}As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel Ni-doping evolution of spin excitations in BaFe2x_{2-x}Nix_xAs2_2, confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping dependent high-energy spin excitations result from localized moments.Comment: 14 pages, 16 figure

    Pseudo-Goldstone magnons in the frustrated S=3/2 Heisenberg helimagnet ZnCr2Se4 with a pyrochlore magnetic sublattice

    Get PDF
    Low-energy spin excitations in any long-range ordered magnetic system in the absence of magnetocrystalline anisotropy are gapless Goldstone modes emanating from the ordering wave vectors. In helimagnets, these modes hybridize into the so-called helimagnon excitations. Here we employ neutron spectroscopy supported by theoretical calculations to investigate the magnetic excitation spectrum of the isotropic Heisenberg helimagnet ZnCr2Se4 with a cubic spinel structure, in which spin-3/2 magnetic Cr3+ ions are arranged in a geometrically frustrated pyrochlore sublattice. Apart from the conventional Goldstone mode emanating from the (0 0 q) ordering vector, low-energy magnetic excitations in the single-domain proper-screw spiral phase show soft helimagnon modes with a small energy gap of ~0.17 meV, emerging from two orthogonal wave vectors (q 0 0) and (0 q 0) where no magnetic Bragg peaks are present. We term them pseudo-Goldstone magnons, as they appear gapless within linear spin-wave theory and only acquire a finite gap due to higher-order quantum-fluctuation corrections. Our results are likely universal for a broad class of symmetric helimagnets, opening up a new way of studying weak magnon-magnon interactions with accessible spectroscopic methods.Comment: V3: Final version to be published in Phys. Rev.
    corecore