2,100 research outputs found
Discovery of an Ultracool White Dwarf Companion
The discovery of a low luminosity common proper motion companion to the white
dwarf GD392 at a wide separation of is reported. photometry
suggests a low temperature ( K) while data strongly
indicate suppressed flux at all near infrared wavelengths. Thus, GD392B is one
of the few white dwarfs to show significant collision induced absorption due to
the presence of photospheric and the first ultracool white dwarf
detected as a companion to another star. Models fail to explain GD392B as a
normal mass white dwarf. If correct, the cool companion may be explained as a
low mass white dwarf or unresolved double degenerate. The similarities of
GD392B to known ultracool degenerates are discussed, including some possible
implications for the faint end of the white dwarf luminosity function.Comment: 27 pages, 9 figures, 4 tables, re-accepted to ApJ after some revisio
The Ultramassive White Dwarf EUVE J1746-706
We have obtained new optical and extreme ultraviolet (EUV) spectroscopy of
the ultramassive white dwarf EUVE J1746-706. We revise Vennes et al.'s (1996a,
ApJ, 467, 784) original estimates of the atmospheric parameters and we measure
an effective temperature of 46,500 +/- 700 K and a surface gravity log g = 9.05
+/- 0.15 (~1.2 M_o), in agreement with Balmer line profiles and the EUV
continuum. We derive an upper limit on the atmospheric abundance of helium of
He/H = 1.3 x 10^{-4} and a neutral hydrogen column density in the local
interstellar medium N_HI = 1.8 +/- 0.4 x 10^{19} cm^{-2} from the EUV spectrum.
Our upper limit corresponds to half the helium abundance observed in the
atmosphere of the ultramassive white dwarf GD 50. We discuss the possibility
that EUVE J1746-706 represents an earlier phase of evolution relative to GD 50
and may, therefore, help us understand the origin and evolution of massive
white dwarfs.Comment: 6 pages, 4 postscript figures, uses aastex, to be published in ApJ
Letter
Ages of White Dwarf-Red Subdwarf Systems
We provide the first age estimates for two recently discovered white
dwarf-red subdwarf systems, LHS 193AB and LHS 300AB. These unusual systems
provide a new opportunity for linking the reliable age estimates for the white
dwarfs to the (measurable) metallicities of the red subdwarfs. We have obtained
precise photometry in the bands and spectroscopy covering
from 6000\AA to 9000\AA for the two new systems, as well as for a comparison
white dwarf-main sequence red dwarf system, GJ 283 AB. Using model grids
available in the literature, we estimate the cooling age as well as
temperature, surface gravity, mass, progenitor mass and {\it total} lifetimes
of the white dwarfs. The results indicate that the two new systems are probably
ancient thick disk objects with ages of at least 6-9 Gyr. We also conduct
searches of red dwarf and white dwarf compendia from SDSS data and the
L{\'e}pine Shara Proper Motion (LSPM) catalog for additional common proper
motion white dwarf-red subdwarf systems. Only seven new candidate systems are
found, which indicates the rarity of these systems.Comment: accepted for publication in Ap
Calibration of White Dwarf cooling sequences: theoretical uncertainty
White Dwarf luminosities are powerful age indicators, whose calibration
should be based on reliable models. We discuss the uncertainty of some chemical
and physical parameters and their influence on the age estimated by means of
white dwarf cooling sequences. Models at the beginning of the white dwarf
sequence have been obtained on the base of progenitor evolutionary tracks
computed starting from the zero age horizontal branch and for a typical halo
chemical composition (Z=0.0001, Y=0.23). The uncertainties due to nuclear
reaction rates, convection, mass loss and initial chemical composition are
discussed. Then, various cooling sequences for a typical white dwarf mass
(M=0.6 Mo) have been calculated under different assumptions on some input
physics, namely: conductive opacity, contribution of the ion-electron
interaction to the free energy and microscopic diffusion. Finally we present
the evolution of white dwarfs having mass ranging between 0.5 and 0.9 Mo. Much
effort has been spent to extend the equation of state down to the low
temperature and high density regime. An analysis of the latest improvement in
the physics of white dwarf interiors is presented. We conclude that at the
faint end of the cooling sequence (log L/Lo=-5.5) the present overall
uncertainty on the age is of the order of 20%, which correspond to about 3 Gyr.
We suggest that this uncertainty could be substantially reduced by improving
our knowledge of the conductive opacity (especially in the partially degenerate
regime) and by fixing the internal stratification of C and O.Comment: 14 figures, accepted by Ap
Mid Infrared Observations of Van Maanen 2: No Substellar Companion
The results of a comprehensive infrared imaging search for the putative 0.06
solar mass astrometric companion to the 4.4 pc white dwarf van Mannen 2 are
reported. Adaptive optics images acquired at 3.8 microns reveal a diffraction
limited core of 0.09" and no direct evidence of a secondary. Models predict
that at 5 Gyr, a 50 jupiter mass brown dwarf would be only 1 magnitude fainter
than van Maanen 2 at this wavelength and the astrometric analysis suggested a
separation of 0.2". In the case of a chance alignment along the line of sight,
a 0.4 mag excess should be measured. An independent photometric observation at
the same wavelength reveals no excess. In addition, there exist published ISO
observations of van Maanen 2 at 6.8 and 15.0 microns which are consistent with
photospheric flux of a 6750 K white dwarf. If recent brown dwarf models are
correct, there is no substellar companion with T > 500 K.Comment: 11 pages, 3 figures, 1 table, accepted to ApJ Letter
Low Luminosity Companions to White Dwarfs
This paper presents results of a near-infrared imaging survey for low mass
stellar and substellar companions to white dwarfs. A wide field proper motion
survey of 261 white dwarfs was capable of directly detecting companions at
orbital separations between and 5000 AU with masses as low as 0.05
, while a deep near field search of 86 white dwarfs was capable of
directly detecting companions at separations between and 1100 AU with
masses as low as 0.02 . Additionally, all white dwarf targets were
examined for near-infrared excess emission, a technique capable of detecting
companions at arbitrarily close separations down to masses of 0.05 .
No brown dwarf candidates were detected, which implies a brown dwarf
companion fraction of % for white dwarfs. In contrast, the stellar
companion fraction of white dwarfs as measured by this survey is 22%,
uncorrected for bias. Moreover, most of the known and suspected stellar
companions to white dwarfs are low mass stars whose masses are only slightly
greater than the masses of brown dwarfs. Twenty previously unknown stellar
companions were detected, five of which are confirmed or likely white dwarfs
themselves, while fifteen are confirmed or likely low mass stars.
Similar to the distribution of cool field dwarfs as a function of spectral
type, the number of cool unevolved dwarf companions peaks at mid-M type. Based
on the present work, relative to this peak, field L dwarfs appear to be roughly
2-3 times more abundant than companion L dwarfs. Additionally, there is no
evidence that the initial companion masses have been altered by post main
sequence binary interactions.Comment: 149 pages, 59 figures, 11 tables, accepted to ApJ Supplement
Search For Oxygen in Cool DQ White Dwarf Atmospheres
We report new infrared spectroscopic observations of cool DQ white dwarfs by
using Coolspec on the 2.7m Harlan-Smith Telescope. DQs have helium-rich
atmospheres with traces of molecular carbon thought to be the result of
convective dredge-up from their C/O interiors. Recent model calculations
predict that oxygen should also be present in DQ atmospheres in detectable
amounts. Our synthetic spectra calculations for He-rich white dwarfs with
traces of C and O indicate that CO should be easily detected in the cool DQ
atmospheres if present in the expected amounts. Determination of the oxygen
abundance in the atmosphere will reveal the C/O ratio at the core/envelope
boundary, constraining the important and uncertain ^{12}C(alpha,gamma)^{16}O
reaction rate.Comment: 2 pages, 2 figures, to appear in proceedings of the 13th European
Workshop on White Dwarf
An Ultraluminous Supersoft X-ray Source in M81: An Intermediate-Mass Black Hole?
Ultraluminous supersoft X-ray sources (ULSSS) exhibit supersoft spectra with
blackbody temperatures of 50-100 eV and bolometric luminosities above
erg s, and are possibly intermediate mass black holes (IMBHs) of
or massive white dwarfs that are progenitors of type Ia
supernovae. In this letter we report our optical studies of such a source in
M81, M81-ULS1, with HST archive observations. M81-ULS1 is identified with a
point-like object, the spectral energy distribution of which reveals a blue
component in addition to the companion of an AGB star. The blue component is
consistent with the power-law as expected from the geometrically-thin accretion
disk around an IMBH accretor, but inconsistent with the power-law as expected
from the X-ray irradiated flared accretion disk around a white dwarf accretor.
This result is strong evidence that M81-ULS1 is an IMBH instead of a white
dwarf.Comment: 12 pages, 1 table, 3 figure
An empirical initial-final mass relation from hot, massive white dwarfs in NGC 2168 (M35)
The relation between the zero-age main sequence mass of a star and its
white-dwarf remnant (the initial-final mass relation) is a powerful tool for
exploration of mass loss processes during stellar evolution. We present an
empirical derivation of the initial-final mass relation based on spectroscopic
analysis of seven massive white dwarfs in NGC 2168 (M35). Using an internally
consistent data set, we show that the resultant white dwarf mass increases
monotonically with progenitor mass for masses greater than 4 solar masses, one
of the first open clusters to show this trend. We also find two massive white
dwarfs foreground to the cluster that are otherwise consistent with cluster
membership. These white dwarfs can be explained as former cluster members
moving steadily away from the cluster at speeds of <~0.5 km/s since their
formation and may provide the first direct evidence of the loss of white dwarfs
from open clusters. Based on these data alone, we constrain the upper mass
limit of WD progenitors to be >=5.8 solar masses at the 90% confidence level
for a cluster age of 150 Myr.Comment: 14 pages, 3 figures. Accepted for publication in the Astrophysical
Journal Letters. Contains some acknowledgements not in accepted version (for
space reasons), otherwise identical to accepted versio
A Dusty Disk Around WD1150-153: Explaining the Metals in White Dwarfs by Accretion from the Interstellar Medium versus Debris Disks
We report the discovery of excess K-band radiation from a metal-rich DAV
white dwarf star, WD1150-153. Our near infrared spectroscopic observations show
that the excess radiation cannot be explained by a (sub)stellar companion, and
is likely to be caused by a debris disk similar to the other DAZ white dwarfs
with circumstellar debris disks. We find that the fraction of DAZ white dwarfs
with detectable debris disks is at least 14%. We also revisit the problem of
explaining the metals in white dwarf photospheres by accretion from the
interstellar medium (ISM). We use the observed interstellar column densities
toward stars in close angular proximity and similar distance as DAZ white
dwarfs to constrain the contribution of accretion from the ISM. We find no
correlation between the accretion density required to supply metals observed in
DAZs with the densities observed in their interstellar environment, indicating
that ISM accretion alone cannot explain the presence of metals in nearby DAZ
white dwarfs. Although ISM accretion will certainly contribute, our analysis
indicates that it is not the dominant source of metals for most DAZ white
dwarfs. Instead, the growing number of circumstellar debris disks around DAZs
suggests that circumstellar material may play a more dominant role in polluting
the white dwarf atmospheres.Comment: ApJ, in pres
- âŠ