2,100 research outputs found

    Discovery of an Ultracool White Dwarf Companion

    Get PDF
    The discovery of a low luminosity common proper motion companion to the white dwarf GD392 at a wide separation of 46â€Čâ€Č46'' is reported. BVRIBVRI photometry suggests a low temperature (Teff∌4000T_{\rm eff}\sim4000 K) while JHKJHK data strongly indicate suppressed flux at all near infrared wavelengths. Thus, GD392B is one of the few white dwarfs to show significant collision induced absorption due to the presence of photospheric H2{\rm {H_2}} and the first ultracool white dwarf detected as a companion to another star. Models fail to explain GD392B as a normal mass white dwarf. If correct, the cool companion may be explained as a low mass white dwarf or unresolved double degenerate. The similarities of GD392B to known ultracool degenerates are discussed, including some possible implications for the faint end of the white dwarf luminosity function.Comment: 27 pages, 9 figures, 4 tables, re-accepted to ApJ after some revisio

    The Ultramassive White Dwarf EUVE J1746-706

    Get PDF
    We have obtained new optical and extreme ultraviolet (EUV) spectroscopy of the ultramassive white dwarf EUVE J1746-706. We revise Vennes et al.'s (1996a, ApJ, 467, 784) original estimates of the atmospheric parameters and we measure an effective temperature of 46,500 +/- 700 K and a surface gravity log g = 9.05 +/- 0.15 (~1.2 M_o), in agreement with Balmer line profiles and the EUV continuum. We derive an upper limit on the atmospheric abundance of helium of He/H = 1.3 x 10^{-4} and a neutral hydrogen column density in the local interstellar medium N_HI = 1.8 +/- 0.4 x 10^{19} cm^{-2} from the EUV spectrum. Our upper limit corresponds to half the helium abundance observed in the atmosphere of the ultramassive white dwarf GD 50. We discuss the possibility that EUVE J1746-706 represents an earlier phase of evolution relative to GD 50 and may, therefore, help us understand the origin and evolution of massive white dwarfs.Comment: 6 pages, 4 postscript figures, uses aastex, to be published in ApJ Letter

    Ages of White Dwarf-Red Subdwarf Systems

    Full text link
    We provide the first age estimates for two recently discovered white dwarf-red subdwarf systems, LHS 193AB and LHS 300AB. These unusual systems provide a new opportunity for linking the reliable age estimates for the white dwarfs to the (measurable) metallicities of the red subdwarfs. We have obtained precise photometry in the VJRKCIKCJHV_{J}R_{KC}I_{KC}JH bands and spectroscopy covering from 6000\AA to 9000\AA for the two new systems, as well as for a comparison white dwarf-main sequence red dwarf system, GJ 283 AB. Using model grids available in the literature, we estimate the cooling age as well as temperature, surface gravity, mass, progenitor mass and {\it total} lifetimes of the white dwarfs. The results indicate that the two new systems are probably ancient thick disk objects with ages of at least 6-9 Gyr. We also conduct searches of red dwarf and white dwarf compendia from SDSS data and the L{\'e}pine Shara Proper Motion (LSPM) catalog for additional common proper motion white dwarf-red subdwarf systems. Only seven new candidate systems are found, which indicates the rarity of these systems.Comment: accepted for publication in Ap

    Calibration of White Dwarf cooling sequences: theoretical uncertainty

    Full text link
    White Dwarf luminosities are powerful age indicators, whose calibration should be based on reliable models. We discuss the uncertainty of some chemical and physical parameters and their influence on the age estimated by means of white dwarf cooling sequences. Models at the beginning of the white dwarf sequence have been obtained on the base of progenitor evolutionary tracks computed starting from the zero age horizontal branch and for a typical halo chemical composition (Z=0.0001, Y=0.23). The uncertainties due to nuclear reaction rates, convection, mass loss and initial chemical composition are discussed. Then, various cooling sequences for a typical white dwarf mass (M=0.6 Mo) have been calculated under different assumptions on some input physics, namely: conductive opacity, contribution of the ion-electron interaction to the free energy and microscopic diffusion. Finally we present the evolution of white dwarfs having mass ranging between 0.5 and 0.9 Mo. Much effort has been spent to extend the equation of state down to the low temperature and high density regime. An analysis of the latest improvement in the physics of white dwarf interiors is presented. We conclude that at the faint end of the cooling sequence (log L/Lo=-5.5) the present overall uncertainty on the age is of the order of 20%, which correspond to about 3 Gyr. We suggest that this uncertainty could be substantially reduced by improving our knowledge of the conductive opacity (especially in the partially degenerate regime) and by fixing the internal stratification of C and O.Comment: 14 figures, accepted by Ap

    Mid Infrared Observations of Van Maanen 2: No Substellar Companion

    Get PDF
    The results of a comprehensive infrared imaging search for the putative 0.06 solar mass astrometric companion to the 4.4 pc white dwarf van Mannen 2 are reported. Adaptive optics images acquired at 3.8 microns reveal a diffraction limited core of 0.09" and no direct evidence of a secondary. Models predict that at 5 Gyr, a 50 jupiter mass brown dwarf would be only 1 magnitude fainter than van Maanen 2 at this wavelength and the astrometric analysis suggested a separation of 0.2". In the case of a chance alignment along the line of sight, a 0.4 mag excess should be measured. An independent photometric observation at the same wavelength reveals no excess. In addition, there exist published ISO observations of van Maanen 2 at 6.8 and 15.0 microns which are consistent with photospheric flux of a 6750 K white dwarf. If recent brown dwarf models are correct, there is no substellar companion with T > 500 K.Comment: 11 pages, 3 figures, 1 table, accepted to ApJ Letter

    Low Luminosity Companions to White Dwarfs

    Get PDF
    This paper presents results of a near-infrared imaging survey for low mass stellar and substellar companions to white dwarfs. A wide field proper motion survey of 261 white dwarfs was capable of directly detecting companions at orbital separations between ∌100\sim100 and 5000 AU with masses as low as 0.05 M⊙M_{\odot}, while a deep near field search of 86 white dwarfs was capable of directly detecting companions at separations between ∌50\sim50 and 1100 AU with masses as low as 0.02 M⊙M_{\odot}. Additionally, all white dwarf targets were examined for near-infrared excess emission, a technique capable of detecting companions at arbitrarily close separations down to masses of 0.05 M⊙M_{\odot}. No brown dwarf candidates were detected, which implies a brown dwarf companion fraction of <0.5<0.5% for white dwarfs. In contrast, the stellar companion fraction of white dwarfs as measured by this survey is 22%, uncorrected for bias. Moreover, most of the known and suspected stellar companions to white dwarfs are low mass stars whose masses are only slightly greater than the masses of brown dwarfs. Twenty previously unknown stellar companions were detected, five of which are confirmed or likely white dwarfs themselves, while fifteen are confirmed or likely low mass stars. Similar to the distribution of cool field dwarfs as a function of spectral type, the number of cool unevolved dwarf companions peaks at mid-M type. Based on the present work, relative to this peak, field L dwarfs appear to be roughly 2-3 times more abundant than companion L dwarfs. Additionally, there is no evidence that the initial companion masses have been altered by post main sequence binary interactions.Comment: 149 pages, 59 figures, 11 tables, accepted to ApJ Supplement

    Search For Oxygen in Cool DQ White Dwarf Atmospheres

    Get PDF
    We report new infrared spectroscopic observations of cool DQ white dwarfs by using Coolspec on the 2.7m Harlan-Smith Telescope. DQs have helium-rich atmospheres with traces of molecular carbon thought to be the result of convective dredge-up from their C/O interiors. Recent model calculations predict that oxygen should also be present in DQ atmospheres in detectable amounts. Our synthetic spectra calculations for He-rich white dwarfs with traces of C and O indicate that CO should be easily detected in the cool DQ atmospheres if present in the expected amounts. Determination of the oxygen abundance in the atmosphere will reveal the C/O ratio at the core/envelope boundary, constraining the important and uncertain ^{12}C(alpha,gamma)^{16}O reaction rate.Comment: 2 pages, 2 figures, to appear in proceedings of the 13th European Workshop on White Dwarf

    An Ultraluminous Supersoft X-ray Source in M81: An Intermediate-Mass Black Hole?

    Full text link
    Ultraluminous supersoft X-ray sources (ULSSS) exhibit supersoft spectra with blackbody temperatures of 50-100 eV and bolometric luminosities above 103910^{39} erg s−1^{-1}, and are possibly intermediate mass black holes (IMBHs) of ≄103M⊙\ge10^3 M_\odot or massive white dwarfs that are progenitors of type Ia supernovae. In this letter we report our optical studies of such a source in M81, M81-ULS1, with HST archive observations. M81-ULS1 is identified with a point-like object, the spectral energy distribution of which reveals a blue component in addition to the companion of an AGB star. The blue component is consistent with the power-law as expected from the geometrically-thin accretion disk around an IMBH accretor, but inconsistent with the power-law as expected from the X-ray irradiated flared accretion disk around a white dwarf accretor. This result is strong evidence that M81-ULS1 is an IMBH instead of a white dwarf.Comment: 12 pages, 1 table, 3 figure

    An empirical initial-final mass relation from hot, massive white dwarfs in NGC 2168 (M35)

    Full text link
    The relation between the zero-age main sequence mass of a star and its white-dwarf remnant (the initial-final mass relation) is a powerful tool for exploration of mass loss processes during stellar evolution. We present an empirical derivation of the initial-final mass relation based on spectroscopic analysis of seven massive white dwarfs in NGC 2168 (M35). Using an internally consistent data set, we show that the resultant white dwarf mass increases monotonically with progenitor mass for masses greater than 4 solar masses, one of the first open clusters to show this trend. We also find two massive white dwarfs foreground to the cluster that are otherwise consistent with cluster membership. These white dwarfs can be explained as former cluster members moving steadily away from the cluster at speeds of <~0.5 km/s since their formation and may provide the first direct evidence of the loss of white dwarfs from open clusters. Based on these data alone, we constrain the upper mass limit of WD progenitors to be >=5.8 solar masses at the 90% confidence level for a cluster age of 150 Myr.Comment: 14 pages, 3 figures. Accepted for publication in the Astrophysical Journal Letters. Contains some acknowledgements not in accepted version (for space reasons), otherwise identical to accepted versio

    A Dusty Disk Around WD1150-153: Explaining the Metals in White Dwarfs by Accretion from the Interstellar Medium versus Debris Disks

    Get PDF
    We report the discovery of excess K-band radiation from a metal-rich DAV white dwarf star, WD1150-153. Our near infrared spectroscopic observations show that the excess radiation cannot be explained by a (sub)stellar companion, and is likely to be caused by a debris disk similar to the other DAZ white dwarfs with circumstellar debris disks. We find that the fraction of DAZ white dwarfs with detectable debris disks is at least 14%. We also revisit the problem of explaining the metals in white dwarf photospheres by accretion from the interstellar medium (ISM). We use the observed interstellar column densities toward stars in close angular proximity and similar distance as DAZ white dwarfs to constrain the contribution of accretion from the ISM. We find no correlation between the accretion density required to supply metals observed in DAZs with the densities observed in their interstellar environment, indicating that ISM accretion alone cannot explain the presence of metals in nearby DAZ white dwarfs. Although ISM accretion will certainly contribute, our analysis indicates that it is not the dominant source of metals for most DAZ white dwarfs. Instead, the growing number of circumstellar debris disks around DAZs suggests that circumstellar material may play a more dominant role in polluting the white dwarf atmospheres.Comment: ApJ, in pres
    • 

    corecore