7,794 research outputs found
NEUROPROTECTIVE ROLE OF ASCORBIC ACID: ANTIOXIDANT AND NON-ANTIOXIDANT FUNCTIONS
Ascorbic acid (AA) or Vitamin C is an important antioxidant which participates in numerous cellular functions. Although in human plasma its concentration is in micromolars but it reaches millimolar concentrations in most of the human tissues. The high ascorbate cellular concentrations are generated and maintained by a specific sodium-dependent Vitamin C transporter type 2 (SVCT2, member of Slc23 family). Metabolic processes recycle Vitamin C from its oxidized forms (ascorbate) inside the cells. AA concentration is highest in the neurons of the central nervous system (CNS) of mammals, and deletion of its transporter affects mice brain and overall survival. In the CNS, intracellular ascorbate serves several functions including antioxidant protection, peptide amidation, myelin formation, synaptic potentiation, and protection against glutamate toxicity. SVCT2 maintains neuronal ascorbate content in CNS which has relevance for neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease. As ascorbate supplements decrease infarct size in ischemia-reperfusion injury and protect neurons from oxidative damage, it is a vital dietary antioxidant. The aim of this review is to assess the role of the SVCT2 in regulating neuronal ascorbate homeostasis in CNS and the extent to which ascorbate affects brain function as an antioxidant
Possible use of self-calibration to reduce systematic uncertainties in determining distance-redshift relation via gravitational radiation from merging binaries
By observing mergers of compact objects, future gravity wave experiments
would measure the luminosity distance to a large number of sources to a high
precision but not their redshifts. Given the directional sensitivity of an
experiment, a fraction of such sources (gold plated -- GP) can be identified
optically as single objects in the direction of the source. We show that if an
approximate distance-redshift relation is known then it is possible to
statistically resolve those sources that have multiple galaxies in the beam. We
study the feasibility of using gold plated sources to iteratively resolve the
unresolved sources, obtain the self-calibrated best possible distance-redshift
relation and provide an analytical expression for the accuracy achievable. We
derive lower limit on the total number of sources that is needed to achieve
this accuracy through self-calibration. We show that this limit depends
exponentially on the beam width and give estimates for various experimental
parameters representative of future gravitational wave experiments DECIGO and
BBO.Comment: 6 pages, 2 figures, accepted for publication in PR
SourcererCC: Scaling Code Clone Detection to Big Code
Despite a decade of active research, there is a marked lack in clone
detectors that scale to very large repositories of source code, in particular
for detecting near-miss clones where significant editing activities may take
place in the cloned code. We present SourcererCC, a token-based clone detector
that targets three clone types, and exploits an index to achieve scalability to
large inter-project repositories using a standard workstation. SourcererCC uses
an optimized inverted-index to quickly query the potential clones of a given
code block. Filtering heuristics based on token ordering are used to
significantly reduce the size of the index, the number of code-block
comparisons needed to detect the clones, as well as the number of required
token-comparisons needed to judge a potential clone.
We evaluate the scalability, execution time, recall and precision of
SourcererCC, and compare it to four publicly available and state-of-the-art
tools. To measure recall, we use two recent benchmarks, (1) a large benchmark
of real clones, BigCloneBench, and (2) a Mutation/Injection-based framework of
thousands of fine-grained artificial clones. We find SourcererCC has both high
recall and precision, and is able to scale to a large inter-project repository
(250MLOC) using a standard workstation.Comment: Accepted for publication at ICSE'16 (preprint, unrevised
Constraining the nature of dark compact objects with spin-induced octupole moment measurement
Various theoretical models predict the existence of exotic compact objects
that can mimic the properties of black holes (BHs). Gravitational waves (GWs)
from the mergers of compact objects have the potential to distinguish between
exotic compact objects and BHs. The measurement of spin-induced multipole
moments of compact objects in binaries provides a unique way to test the nature
of compact objects. The observations of GWs by LIGO and Virgo have already put
constraints on the spin-induced quadrupole moment, the leading order
spin-induced moment. In this work, we develop a Bayesian framework to measure
the spin-induced octupole moment, the next-to-leading order spin-induced
moment. The precise measurement of the spin-induced octupole moment will allow
us to test its consistency with that of Kerr BHs in general relativity and
constrain the allowed parameter space for non-BH compact objects. For various
simulated compact object binaries, we explore the ability of the LIGO and Virgo
detector network to constrain spin-induced octupole moment of compact objects.
We find that LIGO and Virgo at design sensitivity can constrain the symmetric
combination of component spin-induced octupole moments of binary for
dimensionless spin magnitudes . Further, we study the possibility of
simultaneously measuring the spin-induced quadrupole and octupole moments.
Finally, we perform this test on selected GW events reported in the third GW
catalog. These are the first constraints on spin-induced octupole moment using
full Bayesian analysis.Comment: 13 pages, 8 figure
Seismic Behaviour of Multistorey RC Frames with vertical Mass Irregularities
The buildings with mass irregularity behave differently as compared to regular buildings. In the present study, a parameter called mass irregularity index has been proposed to quantify the mass irregularity. The proposed factor depends mainly upon magnitude and location of mass irregularity. Further the present study aims to modify the expression of time period proposed by IS 1893:2002 and relation between mass irregularity coefficient and time period has been evaluated. For present study a family of 108 frames with mass irregularity have been modelled and analyzed by time history analysis. The proposed expression for time period has been validated for buildings with mass irregularity
Structure and electronic properties of transition-metal/Mg bimetallic clusters at realistic temperatures and oxygen partial pressures
Composition, atomic structure, and electronic properties of TMMgO
clusters (TM = Cr, Ni, Fe, Co, ) at realistic temperature and
partial oxygen pressure conditions are explored using the
{\em ab initio} atomistic thermodynamics approach. The low-energy isomers of
the different clusters are identified using a massively parallel cascade
genetic algorithm at the hybrid density-functional level of theory. On
analyzing a large set of data, we find that the fundamental gap E
of the thermodynamically stable clusters are strongly affected by the presence
of Mg-coordinated O moieties. In contrast, the nature of the transition
metal does not play a significant role in determining E. Using
E of a cluster as a descriptor of its redox properties, our
finding is against the conventional belief that the transition metal plays the
key role in determining the electronic and therefore chemical properties of the
clusters. High reactivity may be correlated more strongly with oxygen content
in the cluster than with any specific TM type.Comment: 7 pages, 5 figure
ACCESS POINT NAME (APN)/DATA NETWORK NAME (DNN) BASED AUTO-ANCHORING OF FIFTH GENERATION/NEXT GENERATION TRAFFIC IN WI-FI
Private Third Generation Partnership Project (3GPP) Fifth Generation/next Generation (5G/nG) network environments will have a mix of access technologies, such as Wi-Fi6 and 5G/nG Radio Access Network (RAN) technologies. Techniques presented herein provide for the capability to transport and intelligently anchor 5G/nG data using a Wi-Fi system, which may allow for private 5G/nG onboarding utilizing the Wi-Fi system
NATURAL ANTIOXIDANTS AS DEFENSE SYSTEM AGAINST CANCER
In living cells, the production of free radicals that comprise both reactive oxygen species (ROS) and reactive nitrogen species is highly regulated that help the cells to sustain redox homeostasis. Overproduction of ROS from mitochondrial electron transport chain leakage or excessive stimulation of xanthine oxidase and other oxidative enzymes leads to the uncontrolled production of free radicals leading to oxidative stress that can mediate damage to cell structures. This damage can be repaired by the antioxidant defense system. Antioxidants are capable of stabilizing, or deactivating, free radicals before they attack cellular components such as DNA, proteins, and lipids. The use of antioxidants in cancer prevention is a rapidly evolving research area where antioxidants scavenge free radicals and thus, indirectly help in the prevention of cancer. A wide range of antioxidants such as glutathione, N-acetylcysteine, coenzyme Q10, lycopene, flavonoids, and isoflavones when used in combination with chemotherapy and radiotherapy, result in the reduction of drug toxicity and enhanced efficacy of anticancer agents. This review aims at the use of these exogenous antioxidants as disease-oriented therapy and elucidating the relation of antioxidant enzymes with different types of cancers to overcome the harmful effects of cancer treatment
Analysis of plant growth promoting potential of endophytes isolated from echinacea purpurea and lonicera japonica
Plant endophytes help in maintaining plant health by means of their biofertilizer and biocontrol attributes and, are currently being explored for their ability to produce novel biologically active compounds. Herein, we have isolated beneficial endophytic bacteria from Echinacea purpurea (EF.B3) and Lonicera japonica (LS.B11) that showed phosphate solubilization, siderophore, indole acetic acid and hydrogen cyanide production, and fixation of atmospheric nitrogen. Additionally, the endophytes also conferred antifungal activity against Fusarium sp., Rhizoctonia sp., Pythium sp. and Alternaria sp. When tested in plantae, the LS.B11 and EF.B3 strains were able to promote plant growth and control fungal infections in peaseedlings. Both strains were found to be endophytic as tested by RAPD and viability count. Based on 16S rRNA gene sequencing, we show that the LS.B11 and EF.B3 strains are related to Pseudomonas sp. And Burkholderia sp. By using degenerate primers, we identified genes related to polyketide synthases and non-ribosomal peptide synthetases in EF.B3 and LS.B11, respectively that are typically involved in the production of antimicrobial compounds. Therefore, we conclude that both endophytes can be used for increasing agriculture productivity and in the production of antimicrobial compounds for crop improvement
- …