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ABSTRACT

Ascorbic acid (AA) or Vitamin C is an important antioxidant which participates in numerous cellular functions. Although in human plasma its 
concentration is in micromolars but it reaches millimolar concentrations in most of the human tissues. The high ascorbate cellular concentrations 
are generated and maintained by a specific sodium-dependent Vitamin C transporter type 2 (SVCT2, member of Slc23 family). Metabolic processes 
recycle Vitamin C from its oxidized forms (ascorbate) inside the cells. AA concentration is highest in the neurons of the central nervous system 
(CNS) of mammals, and deletion of its transporter affects mice brain and overall survival. In the CNS, intracellular ascorbate serves several functions 
including antioxidant protection, peptide amidation, myelin formation, synaptic potentiation, and protection against glutamate toxicity. SVCT2 
maintains neuronal ascorbate content in CNS which has relevance for neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s 
disease. As ascorbate supplements decrease infarct size in ischemia-reperfusion injury and protect neurons from oxidative damage, it is a vital dietary 
antioxidant. The aim of this review is to assess the role of the SVCT2 in regulating neuronal ascorbate homeostasis in CNS and the extent to which 
ascorbate affects brain function as an antioxidant.
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INTRODUCTION

Ascorbic acid (AA), Vitamin C, is a water-soluble molecule concentrated 
predominately in citrus fruits, strawberries, and vegetables (e.g., spinach 
and broccoli). It is also synthesized by most plants and animals, with 
the exception of humans and some animal species. Human has mutation 
in the gene encoding for terminal enzyme L-gulono-1,4-lactone oxidase 
(EC 1.1.3.8) required in the biosynthetic pathway to yield AA from 
glucose [1]. Thus, humans require a constant stream of AA from the 
diet and rely on robust “carrier” transport and “barrier” integrity 
mechanisms to meet the brain’s demand [2]. AA is the most powerful 
water-soluble first line of antioxidant defense under many types of 
oxidizing conditions which protects against oxidative stress and induced 
cellular damage by neutralization of lipid hydroperoxyl radicals [3]. 
During aging process, production of free radicals, antioxidant depletion, 
oxidative and nitrosative stress, vascular diseases, and cognitive 
impairments lead to dementia (Alzheimer’s type). Alzheimer’s disease 
(AD) is characterized by an insidious progressive nature that usually 
begins with memory deficits followed by disturbances in other cognitive 
domains that eventually reach a level that impacts the functions of daily 
life. Deficiency of Vitamin C in the diet results in the disease scurvy 
making it an important dietary component. High levels of ascorbate 
(the reduced form of Vitamin C) accumulation in plasma and tissues 
of humans help against oxidative damage and limit inflammation. 
Ascorbate facilitates the reduction of Fe3+ or Cu2+ in the active sites of 
enzymes, providing electrons used either in the hydroxylation of the 
enzymes–substrates or the maintenance of the active-site metal ion in 
the reduced state [4].

VITAMIN C AND ITS TRANSPORT IN BRAIN

Vitamin C is an essential nutrient for the functioning of nervous system 
because of its role in defense against oxidative stress and formation 
of important biocomponents such as myelin, peptide hormones, and 
tyrosine. Ascorbate concentration is 1–2 mM in the whole brain while it 
is much higher in intracellular neuronal concentrations [5]. Having 10-
fold higher rates of oxidative metabolism than supporting glia, neurons 

are sensitive to ascorbate deficiency [6]. High concentration of ascorbate 
in cerebrospinal fluid CSF and neurons is maintained by homeostatic 
mechanism which has neuroprotective role [7]. Depriving ascorbate 
for 14 days from diet, guinea pig brains still had 24% of their original 
ascorbate content, relating to the fact that ascorbate is avidly retained 
by the central nervous system (CNS) during ascorbate deficiency [8]. 
Catecholamine synthesis is decreased if sodium-dependent Vitamin C 
transporter type 2 (SVCT2) transporter fails to maintain high ascorbate 
concentration in CSF and neuronal cells [9,10].

The ischemia-reperfusion injury that occurs with stroke in CNS due 
to oxidative stress and generation of reactive oxygen species (ROS) 
depletes intracellular GSH, and ascorbate in the brain leads to tissue 
damage in CNS [11]. Occlusion of the middle cerebral artery after 
15 min or 3 h of high-dose administration with dehydroascorbate 
given by intraperitoneal injection markedly decreases infarct volume, 
mortality, and neurological deficits in mice and shows rapid transport 
of dehydroascorbate across the blood-brain barrier by glucose 
transporters [12,13]. Due to the lack of SVCT2 in endothelial cells, 
ascorbate does not cross the blood-brain barrier in its fully reduced 
form and thus unable to treat neuronal damage in rat model shown by 
in situ hybridization [14,15]. Increased intracellular ascorbate content 
of rat brain decreased the swelling induced by oxidant stress and also 
prevented the loss of alpha-tocopherol and lipid peroxidation induced 
by culture in oxygenated medium [16,17].

Glutamate uptake by neurons and glia is associated with ischemic release 
of AA from brain cells in large amounts and considerably increased 
the ascorbate efflux from cerebral astrocytes [18,19]. Ascorbate is 
well known to be involved in neuronal biochemistry (e.g., peptide 
amidation, myelination, and catecholamine synthesis). Maturation of 
cultured embryonic cortical precursor cells into neurons and astrocytes 
in medium containing ascorbate was first shown by Lee et al. [20], and 
further confirmation was done in primary cultures of hippocampal 
neurons by Qiu et al. [21]. Ascorbate enters neurons and glia by two 
mechanisms, first by transport of ascorbate on the SVCT2 and second 
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by uptake and reduction of dehydroascorbate. Ascorbate transport 
from plasma across the choroid plexus to the CSF and neuronal cell 
plasma membrane is mediated by SVCT2 transport [22,23]. DHA enters 
the CNS more rapidly than ascorbate, but after oral administration, 
ascorbate readily penetrates the CNS [24].

Supplementation of 1 g Vitamin C a day increases plasma levels from 
50 µM to 70 µM and CSF ascorbate level from 200 µM to 250 µM [23]. 
Neuronal ascorbate concentration in rat models has been calculated to 
be as high as 10 mM, whereas glial ascorbate found to be 0.9 mM [5]. 
Histochemical studies of the brain show that much of ascorbate 
accumulates in neurons [25]. In situ hybridization studies in rat brain 
implicate that SVCT2 mRNA is present only in neurons and not in 
astrocytes [14,26]. SVCT2 mRNA is expressed in certain glial elements 
in the hypothalamus of the brain in more recent studies [15]. The 
second route for ascorbate to enter the CNS is through transport of 
dehydroascorbate across the blood–brain barrier on the ubiquitous 
GLUT1 glucose transporter. Any generated ascorbate in the brain 
interstitium would also be taken up by GLUT1 and GLUT3 in glia and 
neurons. DHA enters both glia and neurons on glucose transporters in 
substantial amounts where it rapidly reduces to ascorbate which serves 
as a backup mechanism to recover oxidized ascorbate before it is lost 
with degradation of DHA. Recently, this mechanism in cultured HL-60 
cells has been termed as “bystander” effect [27].

AA concentration is higher in the human brain and adrenal glands. 
Deficiency of AA results in classical clinical syndrome, scurvy, 
particularly in populations such as the elderly and hospitalized and 
those with poor access to good nutrition [28]. Even smokers require 
high intakes of AA which works as good antioxidant. Arterial elasticity 
and blood pressure regulation through recycling of the endothelial 
nitric oxide synthase cofactor and tetrahydrobiopterin are regulated by 
AA [29]. It is presumed that oxidative stress induced by glutamate is 
moderated by AA and so is protective against overstimulation and cell 
death [30]. Postmortem samples of patients with hippocampal sclerosis 
and AD show altered glutamate transport (e.g., changes in EAAT2 and 
EAAT3 transporters) in the brain [31]. For rapid removal of glutamate 
from the synapse, GLT-1 transporter relies on Na-dependent transport 
across an electrochemical gradient. It is sensitive to oxidative stress, and 
disruption of the GLT-1 transporter leads to glutamate accumulation 
and hyperstimulation of receptors. Memantine drug for AD blocks 
NMDA receptors through glutamate transport which suggests further 
research into glutamatergic signaling and high intracellular AA levels 
in the brain [32].

AA PREVENTS NEURONAL DAMAGE

Brain cells face challenges of the high rate of cellular metabolism, 
especially, mitochondria and high concentration of unsaturated fatty 
acids which leads to increased levels of free radicals and thus oxidative 
stress. Vitamin C directly neutralizes oxidative and nitrosative stress-
causing agents, and interestingly, it also recycles Vitamin E which is 
involved in neutralizing peroxyl radicals which prevents peroxidation 
of lipids. These facts make AA as a highly protective agent in the 
brain. In addition to its role in the synthesis of neurotransmitters 
such as dopamine and norepinephrine, AA also helps in the binding 
of neurotransmitters to their receptors [33-38]. Hyperpolarization 
of the receptor for N-methyl-D-aspartate owing to excessive levels of 
extracellular glutamate could lead to excitotoxic damage. It has been 
shown that AA prevents the binding of glutamate to the receptor 
of N-methyl-D-aspartate and thus prevents neuronal damage by 
decreasing nerve stimulation [39].

High AA concentration in CSF and brain parenchyma has recently 
generated interest in the field of epigenetics to rule out AA function in 
the brain. AA is a critical cofactor (needed for the reduction of iron Fe3+ 
to its active form Fe2+) for the activity of TET (ten-eleven translocation) 
dioxygenase enzyme which oxidizes 5-mc (5-methylcytosine) to 5-hmc 
(hydroxymethylcytosine) as a part of dynamic DNA demethylation [40]. 

Thus, AA is vital for neuronal repair as well as new cell generation and 
may play a direct role in the transcription and expression of hundreds 
of different genes. TET proteins and 5-hmc are abundant in brain and 
knockout of Tet1 in mice indicated that it may be involved in synaptic 
plasticity and memory extinction in addition to DNA methylation [41].

 AA AND BRAIN DISEASES

An investigation by Warner et al. showed that if heterozygous mutation 
is created in SVCT2 gene in mice, it leads to decreased Vitamin C levels 
in body and increased oxidative stress in brain cells [42]. Another 
important study in mice carrying human AD mutations in APP and 
PSEN1 genes (coding for amyloid precursor protein and presenilin, 
respectively) and heterozygous mutation in SVCT2+/- gene increases 
the oxidative stress. A slight decrease of Vitamin C in the mice brain 
hastens the aggregation of amyloid and increases oxidative stress in the 
brain [43]. Another proof comes from the study where gulo knockout 
mice (lacking enzyme required to synthesize Vitamin C) showed higher 
oxidative stress and reduced dopamine and serotonin levels [44].

Clinical studies in human have shown that patient’s with Parkinson’s 
disease and multiple sclerosis have intracellular deficiency of 
Vitamin C [45-48]. In Parkinson’s disease, one of the factors is 
excitotoxicity by glutamate, and as mentioned earlier, glutamate 
excitotoxicity can be taken care by AA as shown in the in vitro results [30]. 
Vitamin C has been shown to reduce indirectly the oligomerization 
of alpha-synuclein by working as an antioxidant [49,50]. It has been 
shown that dietary intake of Vitamin C reduces the risk of Parkinson’s 
disease. Besides brain disorders, Vitamin C has also been shown to be 
involved in psychiatric disorders such as depression, stress, anxiety, and 
other in humans. Animal studies have shown that Vitamin C employs 
antidepressant-like effects by activating 5-HT1A, GABA, N-methyl-D-
aspartate receptors [51-53].

CONCLUSIONS

Antioxidant nature of plant-based compounds plays a significant role 
in controlling many ailments including the dreadful cancer [54-56]. 
Vitamin C, a known antioxidant, exerts its effects both through acting 
as antioxidant and through non-antioxidant effect. Being an electron 
donor, AA readily reacts with a range of ROS to neutralize or decrease 
their reactivity. This leads to the formation of the ascorbate free 
radical, which can be efficiently recycled to AA through enzymatic 
means. Evidences are increasing which shows that Vitamin C along 
with Vitamin E helps in improving brain function by reducing oxidative 
damage. In its non-antioxidant function, it directly affects the activity of 
neurotransmitters by modulating their binding to their receptors and 
thus prevents neurodegeneration and psychiatric disorders.
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