82 research outputs found

    Overloaded adeno-associated virus as a novel gene therapeutic tool for otoferlin-related deafness

    Get PDF
    Hearing impairment is the most common sensory disorder in humans. So far, rehabilitation of profoundly deaf subjects relies on direct stimulation of the auditory nerve through cochlear implants. However, in some forms of genetic hearing impairment, the organ of Corti is structurally intact and therapeutic replacement of the mutated gene could potentially restore near natural hearing. In the case of defects of the otoferlin gene (OTOF), such gene therapy is hindered by the size of the coding sequence (~6 kb) exceeding the cargo capacity (<5 kb) of the preferred viral vector, adeno-associated virus (AAV). Recently, a dual-AAV approach was used to partially restore hearing in deaf otoferlin knock-out (Otof-KO) mice. Here, we employed in vitro and in vivo approaches to assess the gene-therapeutic potential of naturally-occurring and newly-developed synthetic AAVs overloaded with the full-length Otof coding sequence. Upon early postnatal injection into the cochlea of Otof-KO mice, overloaded AAVs drove specific expression of otoferlin in ~30% of all IHCs, as demonstrated by immunofluorescence labeling and polymerase chain reaction. Recordings of auditory brainstem responses and a behavioral assay demonstrated partial restoration of hearing. Together, our results suggest that viral gene therapy of DFNB9—using a single overloaded AAV vector—is indeed feasible, reducing the complexity of gene transfer compared to dual-AAV approaches

    Ralstonia pickettii bacteremia in a cardiac surgery patient in Belgrade, Serbia

    Get PDF
    Ralstonia pickettii is an opportunistic bacterium found in the water environment with an increasing incidence as a nosocomial pathogen. The objectives of this study were to describe R. pickettii bacteremia in a cardiac surgery patient and to evaluate its ability to grow in a saline solution and to form biofilm. The patient in this study underwent mitral and aortic valve replacement surgery with two aortocoronary bypasses. She developed signs of respiratory and renal failure, therefore hemodialysis was started. After 25 days in an intensive care unit, the patient had recurrent episodes of fever with signs of bacteremia. R. pickettii was identified from blood cultures by MALDI-TOF MS. Antimicrobial susceptibility testing was performed using disc diffusion and broth microdilution methods in accordance with EUCAST methodology and results were interpreted following clinical breakpoints for Pseudomonas spp. The isolate was susceptible to all tested antimicrobial agents except aminoglycosides and colistin. Survival of R. pickettii was analyzed in saline solution with four different starting concentrations at 25 degrees C and 37 degrees C for six days. Biofilm capacity was tested using the microtiter plate method. R. pickettii showed substantial growth in saline solution, with starting concentration of 2 CFU ml(-1) reaching 107 CFU ml(-1) after six days. There was no significant difference between growth at 25 degrees C and 37 degrees C. This indicates that storage of contaminated solutions at room temperature can enhance the count of R. pickettii. Our strain did not show the capacity to form biofilm. The patient responded well to adequate treatment with ceftazidime, and after 48 days in ICU she was discharged to convalesce

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2 and reports on five research projects.National Institutes of Health Contract 2 R01 DC00117National Institutes of Health Contract 1 R01 DC02032National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Contract N01 DC22402National Institutes of Health Grant R01-DC001001National Institutes of Health Grant R01-DC00270National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Air Warfare Center Training Systems Division Contract N61339-94-C-0087U.S. Navy - Naval Air Warfare Center Training System Division Contract N61339-93-C-0055U.S. Navy - Office of Naval Research Grant N00014-93-1-1198National Aeronautics and Space Administration/Ames Research Center Grant NCC 2-77

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on twelve research projects.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R01-DC00270U.S. Air Force - Office of Scientific Research Contract AFOSR-90-0200National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Training Systems Center Contract N61339-93-M-1213U.S. Navy - Naval Training Systems Center Contract N61339-93-C-0055U.S. Navy - Naval Training Systems Center Contract N61339-93-C-0083U.S. Navy - Office of Naval Research Grant N00014-92-J-4005U.S. Navy - Office of Naval Research Grant N00014-93-1-119

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on twelve research projects.National Institutes of Health Grant R01 DC00117National Institutes of Health Grant R01 DC02032National Institutes of Health/National Institute of Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research Grant N61339-96-K-0002U.S. Navy - Office of Naval Research Grant N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-97-1-0635U.S. Navy - Office of Naval Research Grant N00014-97-1-0655U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202National Institutes of Health Grant RO1 NS33778Massachusetts General Hospital, Center for Innovative Minimally Invasive Therapy Research Fellowship Gran

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fourteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant R01 DC00126National Institutes of Health Grant R01 DC00270National Institutes of Health Contract N01 DC52107U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-95-1-0176U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0002National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-92-J-184

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fifteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health Contract P01-DC00361National Institutes of Health Contract N01-DC22402National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-94-C-0087U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-93-1-1399U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-94-1-1079U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-92-J-1814National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-88-K-0604National Aeronautics and Space Administration Grant NCC 2-771U.S. Air Force - Office of Scientific Research Grant F49620-94-1-0236U.S. Air Force - Office of Scientific Research Agreement with Brandeis Universit

    The impact of the functional characteristics of a credit bureau on the level of indebtedness per capita: Evidence from East European countries

    No full text
    The institution of the credit bureau is one of the most important elements in controlling the indebtedness levels of a population. All credit bureaus have specific functional characteristics which are able to influence the development of indebtedness. This research aims to identify the most important characteristics of a credit bureau, to quantify those characteristics and to identify causal relationships between the characteristics of the credit bureau and trends in indebtedness per capita levels. The paper introduces the Credit Bureau Functional Index which presents a quantified value of the functional characteristics of the Credit Bureau. The paper establishes a correlation between this index and indebtedness per capita and finds the formula governing this relationship to be linear. The paper concludes that indebtedness levels can be targeted through a mix of characteristics of a credit bureau. Research on this theme is absent in academic literature to date
    • …
    corecore